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Abstract

Weak enforcement of environmental regulations remains a global issue due to inadequate

monitoring and misaligned incentives. This paper examines the effects of automated moni-

toring on achieving air pollution control targets amidst China’s war on pollution. Utilizing

the staggered roll-out process and remote-sensing data, we find that local governments re-

spond to the advanced monitoring system by strategically targeting areas near monitors,

resulting in a 3.2% decrease in pollution adjacent to automated monitors compared to areas

farther away. Furthermore, we observe heterogeneity in response across cities with varying

degrees of pre-existing data manipulation and among officials facing different incentives and

public pressure.
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1 Introduction

In major countries around the world, local governments are responsible for the enforcement

of national environmental regulations, typically under incentive contracts that tie rewards

to performance. However, inadequate monitoring and misaligned incentives often lead to

strategic compliance at the local level that is not aligned with the intended policy goals (Zou

2021). Recent technological developments, such as the use of automated pollution monitoring

systems, have greatly increased the central regulator’s information capacity (Hölmstrom

1979; Greenstone et al. 2022).1 Despite both scholarly and policy interest, evidence has been

scant on whether technology-aided monitoring can lead to improved enforcement or perhaps

only induce localized efforts in achieving pollution control targets.

This paper provides a comprehensive assessment of how the massive rollout of a nation-

wide, real-time air quality monitoring program has impacted air pollution in China, a highly

polluted country, with a particular focus on the spatial dimension. In 2014, amidst public

outcry over air quality, China declared an unprecedented ’war on pollution’ featuring a stag-

gered rollout of the monitoring program across three waves of cities. Led by the Ministry

of Environment and Ecology (MEE), the national environmental air monitoring network ex-

panded from 113 to 335 cities between 2012 and 2014. Additionally, the MEE centralized the

planning, establishment, construction, and maintenance of all central monitors to minimize

data manipulation, which was previously rampant at the local level (Andrews 2008; Chen

et al. 2012; Ghanem and Zhang 2014).2 Judging from ground monitor readings, the cam-

paign has achieved remarkable success: the national-level PM2.5 levels declined by about 40%

1Many countries have invested heavily in monitoring systems. Between 2011 and 2022,

the number of cities with monitoring networks globally has risen from 1,100 in 91 countries

to 6,000 in 117 countries, with a recent emphasis on real-time monitoring (World Health

Organization 2021).

2Central monitors denote nationally-controlled (guokong) monitoring station sites.
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from 2014 to 2019 (Greenstone et al. 2021). However, questions remain as to whether these

achievements touted at the aggregate level are inflated by potentially a localized pollution

control approach targeting monitored areas.

To analyze the role of automated monitoring in achieving pollution control targets, we

draw primarily upon fine-scale remote sensing data, which can fill the spatial gaps in ground

monitoring networks by detecting pollution changes from space. We obtain ten years of

observations of the annual PM2.5 concentration at a 1km by 1km resolution for the whole

of China. Using a spatial difference-in-differences (DiD) design, our empirical specification

consists of two layers. In the first layer, we take advantage of the staggered roll-out of the

new automated monitoring system across cities to explore its impact on citywide pollution.

The second layer constitutes the core of our analyses, wherein we compare areas located

at different distances from monitoring stations within each city to assess how automation

impacts the pollution gap between monitored and unmonitored regions.

Perhaps unsurprisingly, the roll-out of automated monitoring was not randomly assigned.

Cities with larger populations and those higher in the administrative hierarchy were among

the first to join the new program. We deal with the selection issue by including a rich set of

pre-treatment city characteristics, including GDP, population, pollution level, indicators for

environmental priority cities, number of monitors, and geographical size, interacting with

time dummy variables in our regressions. Additionally, we control for potential confounding

policies such as city-level concurrent pollution reduction targets. To verify parallel pre-

program trends between earlier and later adopters, we utilize an event study with flexible

controls.

Our main finding is that areas adjacent to automated monitors experienced a 3.2% de-

crease in PM2.5 concentrations compared to those farther away. Prior to the automation,

monitored and unmonitored areas exhibited very similar pollution trends. The gap between

the two groups emerged after the monitoring began and grew even larger as the final assess-
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ment deadline set by the central government approached.3 Importantly, these results are ro-

bust to several sensitivity checks. We address potential measurement errors of satellite-based

PM2.5 data, use cities without monitoring stations as a placebo group, and apply entropy-

balancing weighting (Hainmueller 2012) to ensure balance in pre-treatment characteristics

between monitored and unmonitored cells within each city. Furthermore, building upon

recent advances in the econometrics of staggered difference-in-differences (DiD) (Goodman-

Bacon 2021; De Chaisemartin and d’Haultfoeuille 2020; Callaway and Sant’Anna 2021), we

present estimates that correct for biases in traditional two-way fixed effects estimators.

To examine the city-wide impact of automation, we conduct an event study using cities’

annual average PM2.5 levels as the outcome and a concentric ring analysis that traces in

detail the spatial scope of the treatment effects around the monitors. We find that as the

distance from the monitors increases, pollution reduction in response to automation decays

and eventually becomes insignificant. Moreover, in the outer rings, the pollution reduction

shows a positive effect. These ring-based results are broadly consistent with the overall

findings, as the overall pollution level in treated cities decreased slightly after they joined

the automatic monitoring system, despite insignificant coefficients.

Several mechanisms could give rise to the observed localized clean-up efforts. Through

a comprehensive review of local government policy documents, we have uncovered a wide

range of action plans implemented in close proximity to the monitors. These plans explicitly

state measures such as regulating coal use, suppressing dust through water spraying, restrict-

ing nearby traffic, prohibiting open burning and outdoor cooking, and shutting down major

sources of pollution. We then empirically test for some of these channels. Leveraging a novel

satellite-based thermal anomalies database that offers high-resolution, high-frequency infor-

mation on local industrial activities, we find that in the vicinity of monitor sites, automation

has led to a 10% reduction in industrial activities and an 8.6% reduction in the number of

3According to the Air Pollution Prevention and Control Action Plan announced in 2013,

the central government conducted a final assessment of overall pollution reduction in 2017.
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days industrial plants operate. We observed little change in the intensity of industrial activi-

ties on the days when plants were operating, though. Additionally, we document an increase

in relative humidity near monitors during high pollution episodes, potentially reflecting the

use of water spraying.

We also find substantial heterogeneity in responses to automation across cities. We

document larger pollution gaps in cities with a history of data manipulation under the old

monitoring system, cities subject to more stringent pollution reduction targets, cities led

by officials with stronger career incentives, and cities with less active civic participation in

pollution monitoring.

Overall, the results demonstrate that enhanced monitoring technology indeed leads to

significant improvements in air quality in monitored areas without a substantial reduction

in city-wide pollution. This localized approach could arguably be cost-effective in a static

sense, given that monitors are often located in dense areas. Nevertheless, it raises envi-

ronmental justice concerns as a larger, lower-income population still resides in unmonitored

areas with exposure to unhealthy air quality. Moreover, the localized cleaning and resulting

monitor readings may greatly overstate the actual city-wide air quality improvement. Fi-

nally, pollution control efforts of limited scope are unlikely to be dynamically efficient once

the monitored areas have been cleaned up. An important policy implication arising from our

findings is that performance monitoring and evaluation should closely integrate ground-level

data with other measures such as remote sensing information, the use of mobile monitors,

and citizen participation in the supervision of environmental quality.

Our paper makes the following contributions. First, we contribute to the literature on

environmental monitoring, regulation, and enforcement (Auffhammer, Bento and Lowe 2009;

Duflo et al. 2013; Shimshack 2014; Gray and Shimshack 2020). Our paper extends the work

of two previous studies (Grainger, Schreiber and Chang 2019; Zou 2021) by providing one of

the first analyses that link strategic pollution reduction by local officials with the dynamic

change in monitoring representativeness in China. We provide new evidence that monitoring
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designs that were efficient ex-ante do not necessarily remain efficient as the responses of

local agents evolve. Our findings are potentially relevant to other developed and developing

countries that built monitoring networks decades ago and thus face an increasing need for a

new or upgraded system.

Second, our paper is closely related to two concurrent studies that utilized the same

regulatory context to investigate the role of monitor-based pollution information in shaping

avoidance behaviors (Barwick et al. 2023) and in detecting pre-automation pollution data

manipulation (Greenstone et al. 2022). Our results complement the former by uncovering

actions that surface when fabricating data is no longer a viable option. With the localized

clean-up, the accuracy of information disclosed to the public is undermined, potentially

leading to sub-optimal avoidance behavior. Our study differs from the latter by focusing on

the post-automation strategic behavior that arises.

Third, our paper contributes to the growing literature on the political economy of en-

vironmental regulation within the framework of the principal-agent relationship. Previous

studies have found that firms and local governments respond to stringent regulations in

ways that can have unintended consequences, such as pollution spillover (Kahn 2004; Kahn

and Mansur 2013; Kahn, Li and Zhao 2015; Chen et al. 2018; Karplus, Zhang and Almond

2018). In particular, a recent study by He, Wang and Zhang (2020) examines how imperfect

performance monitoring of water pollution led Chinese local officials to enforce regulations

on polluters immediately upstream of monitoring stations. In our paper, we document an-

other unintended deviation from the goals of national regulations and offer insights into the

underlying political incentives at the local level.

Lastly, this paper provides strong evidence of uneven pollution control, contributing to

the economic literature on environmental justice (Bento, Freedman and Lang 2015; Banzhaf,

Ma and Timmins 2019; Grainger and Schreiber 2019; Currie, Voorheis and Walker 2020).

Conducting air pollution mitigation exclusively in monitored areas raises concerns that res-

idents living far away from monitoring stations may not benefit from the improvements,
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and they may even experience harm if pollution increases elsewhere as a result. Targeting

improvement efforts to specific areas can worsen geographic, environmental inequality, with

significant distributional consequences.

The remainder of the paper is organized as follows. Section 2 provides a brief background

on environmental regulations and monitoring systems in China. Section 3 describes the main

data sources. Section 4 presents the empirical strategy and estimation results. Section 5

elucidates the underlying mechanisms. Section 6 explores the role of regional heterogeneity.

Section 7 discusses policy implications, and Section 8 concludes.

2 Institutional Background

The benefits of China’s unprecedented economic growth in the past few decades have come

at a significant environmental cost. In response to mounting pressure both domestically and

internationally, the Chinese government has started to redirect its policy focus from eco-

nomic growth to environmental protection. This section provides a brief overview of China’s

institutional background, including its political system and recent air pollution regulations.

It highlights the influence of local officials’ career incentives in shaping their efforts towards

environmental protection.

2.1 Air Pollution Regulations and Political Incentives

China is characterized by a regional decentralized authoritarian regime (Xu 2011). Within

this vast bureaucracy, orders are issued, implemented, and monitored in a top-down manner,

accompanied by a strict performance-based reward-and-punishment system, where higher-

level principals set performance targets for lower-level agents. Motivated by strong career

concerns, local bureaucrats allocate more resources and efforts to criteria that are highly

valued by the upper-level government. In the past, city leaders engaged in fierce competition

for promotions by driving economic growth in their jurisdictions (Li and Zhou 2005). This
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competition led to unintended actions and consequences, including inequality, collusion,

corruption, and manipulation, which deviated from the central government’s stated policy

goals (Fisman and Wang 2015; Oliva 2015; Jia and Nie 2017; Jia 2017).

In 2014, the central government of China declared a “war on air pollution”, implementing

a series of regulatory policies described as the “strictest ever”. This anti-pollution campaign

effectively incorporated environmental targets into the evaluation of local officials along with

traditional metrics such as GDP growth. The implementation of these regulatory policies

was detailed through a number of official documents. The major policy document that sets

the stage for China’s “war on pollution” is the “Action Plan for Air Pollution Prevention

and Control” (referred to as Air Ten hereafter), announced in September 2013. To better

implement Air Ten at the local level, the Ministry of Ecology and Environment (MEE), the

Chinese equivalence of EPA, signed Target Responsibility Agreements—essentially perfor-

mance contracts (’Target’)—with 31 provinces after the issuance of Air Ten. Additionally,

it stipulated details on environmental performance assessment metrics with respect to Air

Ten in another document (“Notice of the General Office of the State Council on Performance

Assessment Measures for Air Pollution Prevention and Control Action Plan”, referred to

as Assessment hereafter) on April 30th, 2014. A more detailed description of these policy

documents is included in Appendix A1.1.

In the agreements, provincial leaders pledge to attain certain air pollution reduction tar-

gets for the 2013–2017 period using the 2012 pollution level as the base. There are two major

performance metrics: the air quality targets and the fulfillment of the ten tasks specified in

Air Ten, such as vehicle or coal power plant pollution control. Notably, the air quality targets

are based on the annual reduction rate in city-wide PM2.5 or PM10 concentrations. These

targets are calculated by averaging the pollution readings across monitoring stations, and

they vary by province. To ensure accountability and successful implementation, the provin-

cial targets are further broken down and allocated to city governments through the target

responsibility system. Regions that fail the annual assessment for reducing air pollution will
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face penalties, including the summoning of local leaders for questioning, financial penalties,

and the suspension of polluting project approvals.

2.2 Monitoring Systems for Ambient Pollutants

The upgrading of the monitoring system was part of the infrastructure support to enforce

the Air Ten environmental regulations. The quality of China’s official air quality data prior

to 2012 has been heavily criticized. Monitoring stations operated in only 113 environmental

priority cities, hindering the implementation of air pollution control policies in other re-

gions. While the central-level MEE was responsible for setting technical specifications and

for publishing the data collected from monitors, local environmental authorities were tasked

with managing and operating monitors and with collecting and managing the environmen-

tal surveillance data submitted to the MEE. This procedure created a non-trivial room for

data manipulation at the local level (Ghanem and Zhang 2014). Typical practices included

shutting down the monitors during heavily polluted days, deliberately blocking the sensors,

and sabotaging the monitors.

In order to address the problem, China expanded its national air quality monitoring

network to cover 335 cities. Additionally, it introduced a real-time reporting system and

disclosure program. This new monitoring program brought several significant improvements.

Firstly, PM2.5 was recognized as a major pollutant. Secondly, after upgrading or constructing

monitoring stations, the raw data collected by these monitors would be transmitted directly

to the central system. Lastly, there were corresponding changes in the responsibilities of

various environmental authorities, as depicted in Figure A11.

Concretely, the automation program was implemented in three waves from 2012 to 2014.

It began with larger cities and more developed regions, such as the Beijing-Tianjin-Hebei

region, the Yangtze River Delta region, and the Pearl River Delta region. The first wave,

which concluded on January 1st, 2013, involved 74 cities upgrading a total of 496 monitoring

stations. In the second wave, which concluded on January 1st, 2014, 116 cities installed new

monitoring systems in 449 stations. The third wave concluded on January 1st, 2015, with
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177 cities establishing 552 stations. Figure 1 provides a visual representation of the three

phases of the program. The national air quality monitoring network consists of 1,497 central

monitors and is designed to serve the urban areas of 367 cities.

To address the possibility of selective siting, locations where the monitors would be

rolled out between 2012 and 2014 were centrally determined in 2012.4 Only air quality data

obtained from the central monitors count towards the cities’ environmental performance.5

Monitoring stations are located in a way that is well intended to represent the air quality

of a city. According to the 2013 “Technical Regulation for Selection of Ambient Air Quality

Monitoring Stations” (Minitry of Ecology and Environment 2013), urban monitors should

ensure that the mean air quality readings of stations represent the city’s average quality

within a 10% margin of error.6 The location choice also considers natural geography, mete-

orology, and socio-economic factors, notably with the number of stations hinged on a city’s

population size and land area. We discuss the representativeness of the monitoring system

4There are three types of monitors in China: monitors controlled by the central

government, monitors controlled by local governments, and micro-monitors to address

specific polluting sources. The centrally-controlled monitors were the first group of

monitors set up before air pollution became a serious concern. As of 2016, there were more

than 2000 monitors in China, including both central and local monitors.

5The China National Environmental Monitoring Centre (CNEMC) evaluates equipment

performance and data accuracy, including surveillance cameras and the real-time reporting

system in stations. Local governments must obtain CNEMC approval before purchasing

and installing equipment. Surveillance cameras are used to prevent data tampering. A

third party operates and maintains the monitors, providing technical support and

conducting quality assessments.

6Stations were chosen based on data simulation from 15-day monitoring of air quality

for each 2km*2km grid in a city. Each station can be representative of a circular area with

a radius between 0.5km and 4km.
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in Appendix Section A3, where we show it is indeed fairly representative of most Chinese

cities in the baseline.

Local governments were not involved in choosing the locations of the central monitors,

and the introduction of automatic air pollution monitoring has prevented the falsification of

data. As a result, there has been a significant improvement in data accuracy (Niu et al. 2020;

Greenstone et al. 2022). However, despite these improvements, local officials, driven by the

dynamics of the principal-agent relationship, often find ways to undermine the representa-

tiveness of the monitoring system. This phenomenon is captured by the popular Chinese

adage, “when the central government has a policy, the local governments have countermea-

sures”. In our empirical analysis, we aim to uncover these hidden actions taken by local

officials.

3 Data

We draw upon several primary data sources, including 1) satellite remote sensing data, which

report air quality and industrial activities with fine granularity; 2) monitoring station data,

which offer key information on a station’s location and automation status; and 3) city socio-

economic characteristics. Here, we present these data sources in detail and describe the key

variables and definitions used in the article. Table 1 reports the summary statistics for these

variables.

A.Remote Sensing Data

Air Quality–We fill spatial gaps in the ground monitoring system using high-resolution

images of the major air pollutant PM2.5, which are derived from original satellite measures

of Aerosol Optical Depth (AOD). AOD measures the total vertical distribution of particles

and gases within a grid according to the light extinction coefficient. It indicates how much

direct sunlight is prevented from reaching the ground by aerosol particles and can be used to

infer ground-level pollution, particularly for fine particles such as PM2.5 and PM10. Overall,
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the atmospheric science literature has documented a strong correlation between remotely

sensed data and ground-level pollution data.7 However, clouds or shadows over certain areas

can contaminate satellite images, primarily for data at high spatial and temporal resolutions.

With this caveat in mind, this paper uses satellite images that include annual satellite-derived

PM2.5 concentration data from a variety of sources (Van Donkelaar et al. 2015, 2016a, 2019)

in grids with a 1km by 1km resolution for a total of nine million grid cells covering the whole

of China from 2008 to 2017. In Appendices A2.1 and A2.2, we discuss caveats with satellite-

based measures of pollution concentrations and conduct a battery of robustness checks to

address related concerns.

Thermal Anomalies–To develop a measure of industrial activities at a fine spatial scale, we

leverage a novel dataset on satellite-based thermal anomalies. Various industrial activities,

such as power generation and cement production, are associated with the local release of an

enormous amount of heat. This motivates the use of thermal anomalies tracked by remote

sensing as a real-time and high-resolution measure of local industrial activities.8

We draw on the MODIS Version 6 Global Monthly Fire Location Product, MCD14ML,

which traces active fires and other thermal anomalies such as industrial plants and volcanoes.9

It provides information on the type of heat spot, including whether the source is presumed

to be a vegetation fire, active volcano, static land source, or offshore source. We discuss the

data set in more detail in Section 5.2.

7See Liu et al. (2007), Lee et al. (2012) and Zhang and Li (2015) for more details.

Previous economic research using satellite measures as a proxy for ground-level pollution

includes Foster, Gutierrez and Kumar (2009), Chen et al. (2013), Sullivan and Krupnick

(2018), Fowlie, Rubin and Walker (2019), and Bombardini and Li (2020).

8Some previous studies that have used thermal anomalies to identify industrial activities

include Huang et al. (2018), Xia, Chen and Quan (2018), and Wei et al. (2019).

9Source: NASA Fire Information for Resource Management System.
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B. Ground Monitoring and Socioeconomic Data

Monitoring Station Data–The MEE has been publishing PM2.5 data since 2012. Our

access to this data source has been granted through the Hong Kong University of Science

and Technology Atmospheric & Environmental Database, and it covers 1,497 stations from

2012 to 2017. The data include each station’s name, geographical coordinates and hourly

pollution readings. This allows us to measure cities’ automation status precisely and gauge

monitored grids, which are the key explanatory variables in our analysis.

Socioeconomic Data–To address the concern that other factors could affect the automa-

tion roll-out sequence and possibly confound the identification, we construct a rich set of

control variables. First, we assemble city-level demographic and socioeconomic data from

the National Bureau of Statistics (NBS), including GDP and population statistics. Second,

we calculate the number of monitors for each city and the maximum distance between cells

and monitors within a city based on the aforementioned geo-location of each monitor and

a city-level GIS map of China. These two variables account for city heterogeneity in terms

of treatments received and geographical size. Third, we obtain an environmental priority

city list from the official website of the MEE.10 Furthermore, we manually collect concur-

rent policies on city-level PM2.5 and PM10 pollution control targets from the Air Pollution

Prevention and Control Action Plans of various provinces.

To explore the heterogeneous impacts of automation, we consider three important di-

mensions: pre-automation data manipulation, local officials’ political incentives, and local

public pressure for air quality improvements. For the former, we use a regression disconti-

nuity (RD) design that captures the sharp increase in reported pollutants immediately after

the monitoring system was automated and the algorithm introduced by Greenstone et al.

(2022). Based on the resulting local linear RD estimates, we construct a binary indicator of

a city’s pre-existing manipulation status, defined as whether its RD estimate is positive. For

10Source: Official website of the State Council of the People’s Republic of China.
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the measures of political incentives, we first leverage the Chinese Political Elite Database

(Jiang 2018) and estimate the promotion likelihood of city leaders following the method of

Wang, Zhang and Zhou (2020). Second, we create a dummy variable of a city’s target status,

indicating whether it has any assigned pollution reduction targets or not. Lastly, we also

extract the provincial per capita number of environmental complaints in 2017, again from

the MEE,11 and use it as a proxy for public pressure.

4 The Effect of Automated Monitoring on Pollution

In this section, we examine whether the use of advanced monitoring technology helps reduce

air pollution. As discussed, the real-time data reporting system leaves local governments

with virtually no ability to tamper with data directly. Therefore, a cost-effective way to

improve the reading of pollution monitors may be to target the monitoring sites for very

localized clean-up.

4.1 Empirical Framework

Using a distance-based DiD method, we test whether the difference between the pollution

reduction in monitored areas versus the un-monitored surrounding areas differs after the

rollout of the automatic pollution monitoring program, which occurred in three staggered

waves. The estimation specification is the following:

ln(PM2.5ict) = αAutoct + βNeari × Autoct + γXct + Celli + Y eart + εict (1)

where i, c and t denote grid cell, city, and year, respectively. The outcome variable,

ln(PM2.5ict), is the logarithm of the satellite-based PM2.5 concentration. As noted in Section

2.1, pollution control targets and the associated rewards/punishments for local officials are

tied to the average annual PM changes from their cities’ monitoring stations. Therefore,

11Source: ‘12369’ Environmental Reports in 2017.

13

https://www.mee.gov.cn/gkml/sthjbgw/qt/201801/t20180123_430188.htm


we use the annual data for the baseline specification. We aggregated the nine million 1km

by 1km cells into one million 3km by 3km grid cells prior to the estimation to reduce the

computational burdens. Autoct is the treatment indicator for the first layer of our analysis,

which takes the value of one after a city c joins the automatic monitoring program, and zero

otherwise.12 By comparing early automated cities to late ones over time, the coefficient α

represents the impact of automation on the overall city-level pollution13. For the second layer

of analysis, we use a distance indicator denoted by Neari, which equals one if the grid cell i

is in an area adjacent to a ground monitor (or equivalently, a monitored area), and zero if it

is located far from the monitor (or equivalently, an unmonitored area). The coefficient (β)

is the parameter of primary interest in our paper. By further comparing areas at different

distances from monitors within cities, it identifies the effects of automation on the pollution

gap between monitored and unmonitored areas. We add a rich array of covariates to the

specification, including cell-fixed effects and year-fixed effects, to control for time-invariant

spatial characteristics and the macro shocks common to all cell units. Since the air pollution

observed in each cell is likely influenced by emissions elsewhere, we cluster standard errors

(denoted by εict) at the city level to safeguard against spatial correlation.

As with any DiD design, the identification of α relies on the parallel trend assumption.

We exploit the fact that the sequence of the automation rollout was largely dependent on

how cities were prioritized; specifically, larger cities and those higher in the administrative

hierarchy tended to receive the treatment earlier. Arguably, these cities might have also been

targeted by other concurrent environmental policies. In order to address these concerns,

we control for the interactions between year dummies and an array of pre-treatment city

characteristics, such as average GDP, population, average pollution between 2008 and 2011,

12Here we use Auto to represent the automatic monitoring program, which includes both

new monitors and existing monitors upgraded to automation.

13Although this is not the central focus of our paper, such aggregate-level responses can

be important when considering policy counterfactuals and mechanisms.
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the number of monitors in each city, the maximum distance between cells and monitors within

a city and indicators for environmental priority cities (which include provincial capitals), and

city-level concurrent PM10 and PM2.5 reduction targets, denoted by Xct. In doing so, we

allow the temporal variation in pollution to differ flexibly across factors most relevant to

the timing of automation. We further assess the validity of the parallel trend assumption

by examining the pre-trends in average pollution levels between treatment and comparison

cities in an event study following a variant of Equation (1):

ln(PM2.5ict) =
3∑

n=−4

αnφ(n)ct + γXct + Celli + Y eart + εict (2)

where n defines the period relative to the automation year, n = −4,−3,−2, 0, 1, 2, 3. The

dummy variables φ(n)ct = 1 [n ≤ t ≤ n+ 1] jointly represent the automation event that

varies by city. We omit the dummy variable for n = −1, the year right before automation.

The set of control variables is the same as in the baseline specification. It is clear from

Figure 2 that there are no clear pre-existing trends in pollution levels prior to automation,

lending support to our identification assumption. The estimated coefficients for t > 0 become

negative, though marginally insignificant, which suggests that the average pollution levels

for the whole automated cities slightly drop after automation.

We also conduct a similar event study analysis in the second layer of our DiD setup. The

cell-level event study is implemented using a sample that covers four years prior to and three

years following the automation of the monitoring system. The specification is as follows:

ln(PM2.5ict) =
3∑

n=−4

αnφ(n)ct +
3∑

n=−4

βnNeari × φ(n)ct + γXct + Celli + Y eart + εict (3)

where n defines the period relative to the automation year, n = −4,−3,−2, 0, 1, 2, 3. The

dummy variables φ(n)ct = 1 [n ≤ t ≤ n+ 1] jointly represent the automation event. We omit

the dummy variable for n = −1, the year right before automation. The control variables are

as previously defined.
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Figure 3 plots the estimated coefficients βn for the event study analysis. PM2.5 concen-

trations in the monitored and unmonitored areas have similar trends prior to automation,

with small and insignificant pre-automation coefficients. In contrast, we find a large and

significant PM2.5 decrease in the monitored areas relative to unmonitored areas during the

three years following the automation.14

4.2 Baseline Results

We perform our baseline analysis on a large sample of grid cells over the 2008–2017 pe-

riod. Table 2 reports the estimation results by adding controls sequentially to the regression

equation. In the first column, the coefficient of Auto captures the average impact of joining

the automatic monitoring program on a city’s air pollution compared to those cities whose

monitors have not yet been opened or automated. In column (2), after controlling for the

possibility of confounding trends in the pollution that vary with pre-treatment city-level

characteristics, the effects of automation on city-wide pollution changes are statistically in-

significant. The distance indicator Neari is denoted by a dummy variable 1(0-3km). Grid

cells within the 3km radius of a monitor are considered monitored (the indicator thus equals

one), and others are considered unmonitored (the indicator equals zero).

In columns (3)-(6), we include the interaction terms of 1(0-3km) and Auto, capturing the

differential effects of the automatic monitoring program on air pollution between monitored

and unmonitored areas. The coefficient of Auto then represents the average effect of monitor

automation on unmonitored areas. Column (3) presents results estimated from Equation (1)

with only the cell and year fixed effects. The specification in column (4) includes additional

controls by interacting year dummies with the pre-existing city-level population and the

average level of pollution. The estimated coefficient on Auto drops from 0.052 to -0.001

14We also demonstrate in Figure A12 that our event study results are robust to

controlling for existing pre-trends, building on recent methods by Rambachan and Roth

(2019).
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and is statistically insignificant, and the coefficient on Near × Auto changes from -0.091 to

-0.032 but remains highly significant. In terms of magnitude, the change in the coefficient

estimates suggests that earlier-automated cities tended to be more populous and polluted

and were also more likely to experience an upward trend in pollution, especially in central

urban areas. In our preferred specification, column (5) further controls for the interactions

of year dummies with a rich set of city-level covariates (such as pre-treatment average GDP,

the number of monitors for each city, the maximum distance between cells and monitors

within a city and a dummy variable that indicates environmental priority city status), and

city-level concurrent PM10 and PM2.5 reduction targets. The estimated coefficients on both

Auto and Near×Auto remain almost unchanged from the previous column, so pre-treatment

population and pollution levels appear to be the most important endogenous factors that

determine the rolling sequence of automation. The estimates in column (5) suggest that

air pollution in the monitored areas is 3.2% lower than in the unmonitored areas after the

automation roll-out. Column (6) uses cells outside a 60km, as opposed to a 3km radius

of a monitor, as control units. The coefficients on the interaction term are statistically

significant and roughly similar in magnitude, confirming that our main results are robust to

alternative ways of defining unmonitored areas. The coefficient on Auto, which captures the

impact of monitor automation on city-level pollution, is negative but small and statistically

insignificant. Section 4.3 will explore in further detail the spatial pattern of possible pollution

relocation using a concentric ring analysis.

4.3 Uneven Pollution Control: A Concentric Ring Analysis

To better showcase the geographical scale of the clean-up efforts, we deploy a concentric ring

approach under the implicit assumption that targeted pollution control measures should

decay with greater geographic distance from the monitor. Specifically, we replace the binary

indicator for monitored areas in Equation (1) with a set of bin indicators, which denote cells

within a 3km radius of a monitor, then those within 6 km, continuing step-wise out to 150
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km.15

The results are reported in Figure 4. The reference category includes grid cells more

than 150km away from the closest monitor. These experienced a 4.5% increase in pollution

level, as denoted by the estimated coefficient of β. The coefficient estimates for the set of

bin indicators then represent the impact of automatic monitoring on air pollution in each

distance bin relative to the reference group. Based on these estimates, the reduction in

PM2.5 within the 3km ring around monitors is about 4.7% (i.e., 9.2% − 4.5%), and the

effect reduces monotonically with distance to the monitor, slowly approaching zero at the

distance bin beyond 120km. As a robustness check, we replace the outcome variable with

log(AOD). A similar pattern is documented in Figure A14. In general, the spatial scale of

pollution reduction suggests uneven pollution control. Nevertheless, there does not appear

to be any clear pattern of pollution migration across space. Areas close to the monitors reap

a much larger proportion of pollution reduction from the automatic monitoring technology

than those far away (which show almost negligible change), thereby undermining the dynamic

representativeness of the monitoring network and generating environmental justice concerns.

4.4 Robustness Checks

In this subsection, we conduct a series of additional robustness checks to address various

empirical challenges and rule out other possible confounds discussed below.

Measurement Errors in Satellite-based PM2.5 Data Our primary dependent variable,

the satellite-based PM2.5 data obtained from Van Donkelaar et al. (2016b) and Van Donke-

laar et al. (2016c), relies on a combination of remotely sensed Aerosol Optical Depth (AOD)

measurements, ground station data, and a complex chemical transport model. While these

satellite-derived pollution indicators have been widely used, recent studies have highlighted

15Figure A13 shows the distribution of the maximum distance between cells and

monitors across cities. The average maximum distance in our sample is 152.29km.
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concerns regarding potential measurement errors (Jain 2020; Proctor, Carleton and Sum

2023). In Appendix Section A2.1, we conduct a thorough evaluation of the quality of the

satellite-derived pollution indicators through various analyses. Additionally, we address three

primary concerns related to these indicators in a series of robustness checks, as presented in

Appendix Section A2.2. First, we use raw AOD data instead of the imputed PM2.5 data as

the outcome variable. This adjustment allows us to account for potential measurement errors

that may be correlated with the distance to monitoring stations, as the ground monitor data

are utilized in the imputation process. Second, we investigate the potential aggregation bias,

commonly referred to as the “ecological fallacy,” associated with using annual data (Banzhaf,

Ma and Timmins 2019). To address this concern, we replicate our analyses using monthly

AOD-based PM2.5 data, as well as other monthly moments such as the maximum and mini-

mum values of daily observations from raw AOD data. Lastly, we examine the possibility of

measurement errors resulting from remote sensing by applying the bias-correction method

developed by Proctor, Carleton and Sum (2023). This approach helps mitigate potential

biases in the satellite-derived data. By conducting these robustness checks, we enhance the

validity and reliability of our findings regarding the impact of automation on pollution levels.

Heterogeneous Treatment with Staggered DiD A growing applied econometrics lit-

erature has identified potential biases in the traditional two-way fixed effects (TWFE) esti-

mator in a staggered difference-in-differences design. The biases may emerge when the early

treated units serve as control groups for the later treated ones, especially in the presence

of heterogeneous dynamic treatment effects (Goodman-Bacon 2021; De Chaisemartin and

d’Haultfoeuille 2020). These concerns are relevant to our estimation of the effects of auto-

matic monitoring on pollution. Although the main specification is a triple difference design,

we essentially leverage the staggered program roll-out. To address this issue, we perform a

Goodman-Bacon decomposition of the DiD estimation, where we focus on the pollution gap,

defined as the difference in pollution levels within 3km of a monitor in a given city and that
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city’s average pollution level. As a robustness check, we exclude the monitored treated in

wave three from the treated group, which is identified as the main contributor to the bias

associated with the TWFE estimator. We also employ an alternative estimation approach

proposed by Callaway and Sant’Anna (2021). The details of the additional analyses are

reported in Appendix Section A2.3.

Placebo Tests We perform three placebo tests to verify our findings. The first and most

important test involves the use of nine cities without monitoring automation. We identify

“placebo” monitor spots within these cities, adhering to existing siting rules, and assign their

automation timings to either Wave 2 or 3.16 A regression analysis with the same source of

satellite data shows that air quality near the “likely” monitor spots in these non-treated cities

does not experience a trend break compared to those farther away before and after station

“automation” (see Appendix Table A11).17 In two additional placebo tests, we randomly

1) generate automation timing within the sample period for each monitor and 2) assign

monitor sites to locations (see Appendix Figure A15). The distributions of placebo estimates

reinforce our principal finding, with the benchmark coefficient (-0.032) lying outside the 99%

confidence intervals.

Alternative Explanation We evaluate an alternative explanation other than strategic

cleaning that could yield differences in pollution reduction between monitored and unmon-

itored areas. It is possible that monitors are often located in highly polluted areas, with

pollution dynamics exhibiting mean reversion due to air dispersion. If so, one should ex-

16Specifically, we assign counterfactual monitors to the location of either the municipal

Environmental Protection Bureau, the municipal government building, or both.

17In another exercise, we use the other type of monitoring stations for cross-validation.

The results are reported in Appendix Figure A16, again lending support to our main

finding.
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pect that post-automation monitored cells located in dirtier areas of a city may show larger

pollution reductions than those located in cleaner parts. We check our results against these

alternative scenarios with a regression accounting for pre-existing pollution conditions:

ln(PM2.5ict) = αAutoct + βNeari × Autoct + ηNeari × Autoct ×Dirtieri + γXct + Celli + Y eart + εict

(4)

where Dirtieri is an indicator that equals one if cell i is more polluted than the city average

in the base year 2008. The results are reported in Columns (1)–(3) of Table 3, where we find

consistent estimates on the main parameter of interest and no significant difference between

clean and dirty monitored areas, ruling out competing explanations of mean reversion in

pollution.

Entropy Balancing between Monitored and Unmonitored Cells To directly address

the potential bias due to selective monitor siting, we employ the entropy balancing technique

(Hainmueller 2012; Hainmueller and Xu 2013)–a generalized weighting method–to enhance

the comparability of monitored and unmonitored cells. By selecting control grid cells that

closely match monitored ones based on confounding factors such as proximity to polluters,

cell-level population, and 2008 GDP, this approach ensures a balance in the mean and

variance of these variables between the monitored and unmonitored cells within each city.18

Column 4 in Table 3 reports the result: automation leads to a 3.1% increase in the pollution

gap, a consistently significant impact similar to our baseline estimate.

18The technique is similar to propensity matching, but it has an attractive feature in

that dissimilar observations are not dropped from the analysis but are assigned smaller

weights instead. This flexibility allows us to achieve a higher level of balance between the

treated and control groups, ensuring not just the balance in means but also in higher-order

moments.
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5 Mechanisms of Localized Clean-up

As noted in Section 2.2, manipulation of environmental data was previously prevalent among

local governments. Although the new air quality monitoring system has made direct tam-

pering with equipment virtually impossible, manipulation cannot be completely eliminated.

In this section, we analyze the potential channels by which differential spatial patterns of air

pollution control may have emerged.

5.1 Evidence of Strategically Targeted Reductions

To gain first-hand evidence on the channels of strategic cleaning, we extensively reviewed

a large number of government policy documents. To this end, we query the China Law

Journal Database,19 which hosted the entire corpus of more than three million government

documents, including policies and legal regulations. We adopt a two-step methodology where

we begin by searching for keywords such as “near monitoring stations” and their synonyms.

Following this, we manually validate if the search results correspond to pollution control

action plans that were issued by local authorities.

The analysis of our search outcome reveals a striking finding. It is not uncommon for

local governments to put down strategic cleaning and the targeted measures explicitly in

their official documents. We managed to locate 121 documents from 72 cities that directly

mentioned “atmospheric pollution control around monitoring station”. Among these docu-

ments, 42 of them even specified pollution control measures within a specific distance range

of 0.05–10km from the monitoring station. Table A12 provides an overview of the targeted

measures mentioned in these 121 documents, which include regulations on coal use near

the monitors, dust suppression through water spraying, traffic restrictions in the vicinity,

bans on open burning and outdoor cooking, and the closure of major polluting plants. Fur-

19Source: PKULAW (Beidafabao, in Chinese) maintained by the Legal Information

Center of Peking University.
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thermore, our findings are supported by several newspaper articles that corroborate these

measures. Appendix A1.2 presents a more detailed analysis of the document contents, along

with anecdotal evidence from newspapers. In Appendix A1.3, we provide examples of official

documents, including the original text and our translations, highlighting the sections related

to strategic cleaning.

5.2 Empirical Test of Strategic Cleaning Mechanisms

Change in Industrial Activities In this subsection, we examine how monitoring au-

tomation affects the spatial patterns of industrial activities, utilizing a novel satellite-based

measure of the intensity of industrial activities at high spatial and temporal resolutions.

We draw upon the MODIS Version 6 Global Monthly Fire Location Product, which offers

the number and strength of thermal anomalies on static land, leveraging the fact that most

industrial plants emit high-temperature waste gas, creating thermal hotspots above them.

We create three measures of thermal-based industrial activities. Fire Radiative Power

(FRP) is a measure of the average intensity of thermal anomalies, defined as the rate of radi-

ant heat output, the rate at which fuel is consumed and smoke emissions are released. Days

measures the annual number of days with active thermal anomalies in each cell. 1(Thermal

Anomalies Presence (TAP)) is a dummy variable that equals one if there are thermal-related

economic activities in a given cell in a given year. Figure 5 presents the high correlations

between detected thermal anomalies and the locations of major air-polluting firms and power

plants. We further explore the validity of the thermal anomaly measure for the measurement

of local pollution in greater detail in Appendix A2.4.

We adopt a similar specification as in the baseline model (Equation 1), replacing the out-

come variables with measures of the presence of thermal anomalies or their intensity at cell i

in year t. To address the issue that a large proportion of grid cells have no thermal anomalies,

we estimate a Poisson count data model for a set of outcomes. The results are reported in Ta-

ble 4. Column (1) presents estimates of a logit model where the dependent variable switches

to one with thermal anomalies present (TAP) in grid cell i in year t. The marginal effect
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estimates suggest that automation leads to a 10.1% reduction in the probability of observing

industrial activities within a 3km radius of the monitors relative to unmonitored areas. A

possible explanation is that industrial sources closer to the monitors were more likely to be

closed down following automation. Columns (2) and (3) report results from the Poisson

estimation, where the dependent variables are the log number of days with active thermal

anomalies and the average intensity of thermal anomalies, respectively. The coefficients of

interest are on the interaction of Neari×Autoct, which are negative and significant for both

outcomes. Columns (4) and (5) examine the effects of the automatic monitoring system

on the intensive margin by restricting the sample to grid cell-year observations with active

thermal anomalies. The coefficient on the interaction, β, is negative and significant when

the dependent variable is the log number of days with active thermal anomalies. However,

when the dependent variable is the average intensity of thermal anomalies, the estimated

magnitude is small, and the coefficient is statistically insignificant. These findings indicate

that monitoring automation is likely to reduce the operating days of nearby plants but not

the intensity of activities on the days plants are operating.

Water-Spraying Next, we look for corroborating evidence on the “water spraying” channel

frequently cited in government documents. Table A13 evaluates the effects of the monitor

automation program on satellite-based relative humidity using meteorological data from He

et al. (2020). Clearly, automation increases the relative humidity near monitors, especially

during the winter when the particulate matter pollution tends to be more severe, and water

spraying is more likely to be deployed.

6 Heterogeneity in Localized Clean-up

By far, we offer compelling evidence that targeted measures have been taken by local reg-

ulators to reduce air pollution, specifically in areas close to the monitors. Moreover, to

emphasize the importance of political-economy factors in driving the results, we explore
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multiple sources of heterogeneity, including a city’s pre-automation level of compliance with

air pollution reduction policies, leader characteristics and designated targets for pollution

reduction that proxy for their political incentives, and public pressure for cleaner air.

a) Underreporting before Automation

To convincingly connect the observed strategic behavior to local governments’ responses to

the introduction of stricter environmental regulations, we focus on cities that already had

monitors before the automation rollout and divide those cities into two types: cities with

a high degree of pre-automation data manipulation, and cities without prior manipulation.

The conjecture is that, for cities that did not previously engage in data tampering, the

introduction of automated pollution monitoring would have little impact on their de facto

regulatory stringency. In contrast, for cities detected to have engaged in data manipulation in

the past, automation shut down their channel for achieving “effortless perfection”—meeting

environmental standards by misreporting pollution reading.

Out of the 335 cities that had active ground-based air monitoring stations by the end

of the sample period (2017), only 113 had installed monitors before 2013. For this sub-

sample, we build upon the work of Greenstone et al. (2022) to classify whether or not their

environmental data had previously been manipulated. That measure was obtained from

a regression discontinuity design that captured the sharp increase in reported pollutants

immediately after the monitoring system was automated.20

Figure 6 presents the heterogeneity in the pollution gap between cities that previously

engaged in data manipulation and those that did not. As shown, we observe a pollution gap

only in those cities that previously manipulated data and not in the others. This pattern is

consistent with strategic localized targeting of clean-up as a direct response to the automated

20For cities that had monitors before automation, manipulation status is defined by

whether the local linear RD estimate is positive, as calculated using the algorithm in

Greenstone et al. (2022).
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monitoring technology.

b) Local Officials’ Political Incentives

As we have noted in Section 2.1, the salient points in the regulatory changes all help establish

a closer tie between monitored pollution levels and the officials’ performance assessment.

Under a target-based responsibility system, local officials are faced with stronger incentives

to achieve a reduction in monitored PM concentrations.

Motivated by these institutional details, we conduct two empirical exercises to shed light

on local governments’ incentives for strategic cleaning. First, we evaluate the heterogeneity in

strategic cleaning across city leaders with different likelihoods of promotion–a proxy for their

career incentives. Aided by the Chinese Political Elite Database (Jiang 2018), we estimate

the promotion likelihood for leaders (specifically, party secretaries) of each city by following

the lead of Wang, Zhang and Zhou (2020).21 The hypothesis is that local officials are more

likely to prioritize strategic cleaning efforts if they have a higher probability of promotion

compared to their “effective” competitors within the same province (Li et al. 2019). The

heterogeneity analysis, displayed in Panel (a) of Figure 7, reveals that city leaders with

a higher likelihood of promotion than the provincial median indeed demonstrate a greater

inclination toward strategic cleaning after the implementation of automated monitoring.

Second, we further explore whether pollution reduction targets matter. Specifically, we

examine the impact of pollution reduction targets on their strategic cleaning practices by

comparing cities with pollution reduction targets to those without. With no pollution re-

21Specifically, we regress the promotion dummy (which equals one if the city leader was

promoted to a higher-level position by the end of their term) on various characteristics of

the leader (age, political hierarchy level when they entered the office and educational

attainment). We then use the estimated coefficients, which are independent of the leaders’

ex post performance, to predict the ex ante promotion likelihood of each city leader in our

sample.
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duction targets, cities would only be required to maintain their baseline levels of pollution

and would therefore face less pressure. The pollution reduction target for each city is ob-

tained from the provincial pollution control plan. In Panel (b) of Figure 7, cities are divided

into two groups based on whether they “have any assigned pollution reduction targets during

2013-2017” or not. We observe greater strategic cleaning responses among cities in the group

with pollution reduction targets.

c) Public Pressure

Environmental regulation in China largely depends on top-down supervision and executive

orders. Such approaches are subject to implementation gaps and fraudulent reporting. As

shown, while automated monitoring technology can mitigate the principal-agent problem,

it can also induce new strategic reactions from local agents. Some have argued that civic

engagement and bottom-up supervision could complement the current regulatory regime. In

this section, we seek to relate regional heterogeneity in strategic clean-up responses to local

public pressure, measured by the number of air quality complaints from local residents.

The environmental authorities in China have begun to pay more attention to public

complaints. The 2003 Environmental Impact Assessment Law and the 2004 Administrative

Licensing Law included concepts of disclosure and public participation (Wang 2017). In 2009,

the MEE officially launched the 12369 hotline for whistleblowing related to environmental

issues. Online and social media platforms with similar functions have also been established.

As of 2017, more than 600,000 complaints had been lodged. The MEE requires that each

reported case be resolved within 60 days, and 99% of documented cases met this deadline.

For our analysis, we constructed an indicator of local public pressure based on the per capita

number of environmental complaints in 2017. This measure could capture both supply and

demand side factors that determine the level of public oversight of environmental problems.22

Figure 8 presents differential responses to monitor automation across provinces with varying

22On the supply side, the functioning and responsiveness of the hotline or online

complaint platform play an important role in influencing citizen engagement. On the
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levels of environmental complaints. We found that a stronger strategically targeted response,

represented by wider gaps in the effects of automation between monitored and unmonitored

areas, took place in provinces that had low levels of civic engagement in environmental

issues. In provinces with more “participatory” environmental monitoring, any industrial

pollution, whether emitted by plants in monitored or unmonitored areas, is likely to arouse

public concern and therefore put pressure on local authorities to respond quickly. These

results offer some suggestive evidence concerning the complementarity between top-down

and bottom-up approaches when it comes to environmental monitoring.

7 Discussion and Policy Implications

7.1 Could Strategic Cleaning be Efficient?

Our main finding is that after the upgrade to automated monitoring systems, performance

evaluation based solely on in-situ monitors leads to localized clean-up efforts. This localized

clean-up can be rationalized due to the placement of monitoring stations in densely popu-

lated urban areas with high pollution levels, where the marginal social cost of pollution is

high. We provide evidence of this in Table A14, which shows that areas within 3 kilometers

of monitors contain 12.4% of China’s population. However, the marginal benefit of local

pollution (equivalently, the marginal cost of abatement) could also be high in these central

locations due to higher agglomeration and industrial productivity, making it unclear how

pollution should be optimally allocated across space. Furthermore, even if it were efficient

to prioritize cleaning up near monitors in a static sense by considering the location-specific

cost and benefit of pollution control, it is unlikely to remain dynamically efficient because

the incentive gap between cleaning up in monitored and unmonitored areas persists even

after the monitored areas have been cleaned up. As shown in Figure A17, a large group of

demand side, local residents may pay varying degrees of attention to the surrounding

pollution, which in turn drives their willingness to lodge a complaint.
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the population living far away from the monitors is exposed to unhealthy levels of pollution.

From the perspective of aggregate impacts, localized clean-up fails to yield a positive exter-

nality that could benefit broader regions and populations, such as the unmonitored areas of

the same city, neighboring cities, or even countries (Heo, Ito and Kotamarthi 2023).

In the following subsection, we proceed to explore two additional costs of strategic clean-

ing: the monitors’ representativeness in terms of capturing citywide air quality and envi-

ronmental justice. We then offer policy recommendations for the design of a more effective

monitoring and evaluation scheme.

7.2 Consequences of Uneven Pollution Controls

A Re-examination of Environmental Performance Principals such as the central gov-

ernment or higher-level regulators often have to rely on monitor readings to reward or punish

agents. Therefore, the localized clean-up could lead to biased policy evaluations and subse-

quent actions.23

As an illustrative example, we utilize remote sensing data to reassess the policy goals

set by the "Air Ten" action plan in the present context. The original plan, published in

2013, aimed at a 10% reduction in the PM10 concentration nationwide and a 25% reduction

in the PM2.5 concentration in the Beijing-Tianjin-Hebei region by 2017. A progress report

released in 2017 stated that both goals had been achieved with flying colors, documenting a

22% reduction in PM10 nationwide and a 40% reduction in Beijing-Tianjin-Hebei (hereafter

referred to as BTH).

A cross-examination of the satellite-based pollution measures reveals a somewhat different

story. As shown in Table 5, the city-wide recorded reductions in satellite-based PM2.5 from

2013 to 2017 tend to be much lower: 2.592% for the whole country and 14.638% within

the BTH region. Of course, the discrepancy could be driven by some other factors, such

23We provide a comprehensive analysis of the worsening spatial representativeness of the

monitors in Appendix A3.
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as inherent differences between satellite and ground-based measures. To highlight that the

localized clean-up around the monitors is likely a key factor here, we leverage the full coverage

of satellite data to compare reductions in satellite-based pollution directly at the monitored

areas to reductions in rings at different distances from the monitored areas and for the whole

city. Specifically, for the BTH region, the recorded reductions in satellite-based PM2.5 drop

monotonically from 21.82% at the monitored areas (i.e., those 3 by 3km grid cells where

the monitors are situated) to 17.13%, 12.83% and 5.49% in cells that are within 3–30km,

30–60km, and 60–90km concentric rings to the monitors, and eventually down to 1.39%

in cells beyond 90 km away from the monitors. Reassuringly, a similar pattern has been

documented for the whole country, with the recorded satellite-based pollution reductions

decreasing monotonically from 5.03% in the monitored cells to 0.29% in cells over 90km

away from the monitors.

Overall, localized clean-up explains about 30% to 50% of the satellite-based reductions

in PMs from 2013 to 2017. If we scale the ground-based monitor measures down by the same

margin, then the “representative” reductions in PMs will be 11% for the whole country and

27% for the BTH region, barely meeting the initial goals.

Distributional Impacts The uneven pollution control could generate an uneven distribu-

tion of cleanup benefits among residents. Figure A18 shows the monitor share—defined as

the percentage of counties with monitors—plotted against income (Panel a) and urbanization

rate (Panel b) across 50 county groups ranked by income or urbanization rate, respectively.

This figure conveys a clear message: more developed and urbanized counties tend to contain

more monitors, and the slope of the curve is steeper at higher income ranges. As a result,

strategic cleanup tends to direct a greater proportion of the health and amenity benefits

from pollution reduction to high-income and urban residents.

The distributional consequences of uneven pollution control could be further amplified

by large disparities in the utilization of health services, awareness of pollution-related health

risks, and prevention measures between rural and urban areas. For instance, Li et al. (2018)
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have found that urban adults in China are more than three times more likely to access

health care than their rural counterparts. The increasing urbanization rate notwithstanding,

a preponderant proportion of the population still lives in rural, largely unmonitored areas.

Appendix Table A14 reports results on a back-of-the-envelope calculation of the mone-

tized health benefits (i.e., avoided mortality and morbidity costs) of automation for different

distance bins from the monitors. To evaluate the impact of strategic cleaning on mortal-

ity, we obtain the estimate of the PM2.5-attributable mortality rate from He, Liu and Zhou

(2020), which found that a 10-µg/m3 increase in PM2.5 increases monthly mortality by 3.25

percent. Regarding the morbidity impact, we follow a comprehensive study by Barwick et al.

(2018), which estimated that a medium-run reduction of 10-µg/m3 in daily PM2.5 would lead

to $22.4 annual savings in healthcare spending per household. Using the preferred specifi-

cation (i.e., Column (4) in Table 2), the annual mortality and morbidity benefits per capita

are 126.22 and 2.10 USD for residents within a 3km radius of the automated monitors, more

than double the benefits accrued to those living 60 km away from the monitors. The total

monetized benefits from reduced pollution-related mortality and mobility are 67.53 and 1.12

billion USD annually, much higher than the annualized set-up and maintenance costs of the

automated air monitoring system.24 However, this comparison does not necessarily imply

that the monitoring network passes the cost-benefit test. We caution that various forms

of cleanup efforts could also incur substantial abatement costs, the estimation of which is

beyond the scope of our paper.

7.3 Policy Suggestions

Remote Sensing Data and Other Pollution Information A key insight of our study

is that the current coverage of the monitoring network in China is insufficient to preclude

local officials’ strategic targeting of monitor sites for localized cleanup. In an ideal scenario

24MEE spent 2.7 billion USD to build the new monitoring system and the annual

maintenance cost of each monitor is around 22,000 USD. Source: Sohu.
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with monitoring network coverage almost everywhere, local officials would find it impossible

to predict the exact sets of monitors used by the upper-level authorities to evaluate their

environmental performance. Consequently, they would be left with only one choice: to work

harder to improve air quality citywide. Yet, the real world does not function in this way,

and governments face budget constraints. The large size of the ground monitoring system

makes it costly to build and maintain. Satellite-based pollution measures can be a good data

source to fill the gap in the spatial coverage of monitoring networks.25

We caution that the utilization of satellite images should not be taken too far. After

all, remote sensing data are not direct measures of ground pollution levels and are sub-

ject to missing data problems resulting from cloud coverage. Meanwhile, ground monitors

can provide more detailed hourly observations and better accommodate changing weather

conditions. However, satellite data offers evidence of the dynamic spatial representative-

ness of the ground-monitor data, which could help evaluators better interpret the monitored

data. It is also noteworthy that advanced monitoring technologies such as mobile monitors

and micro-monitors have enabled broader network coverage over which local regulators can

exert little control. The central government could make use of this recent innovation as

supplementary information when evaluating city-wide pollution. Overall, incentive and in-

formation issues apply to the design, regulation, and enforcement of any monitoring system.

Importantly, contributions from multiple sources, including the ground monitoring system,

remote-sensing technologies, mobile monitors, observations by the public, and third-party

auditors, are needed to achieve a better regulatory outcome.

Public Participation China’s environmental governance has long been dominated by two

major players—the government and firms—while the public has largely been shut out. Given

25As shown in Sullivan and Krupnick (2018) and Fowlie, Rubin and Walker (2019),

remote-sensing data helped these authors assess the extent to which the existing U.S.

ground monitor-based measurements over- or under-estimate the true exposure to PM2.5

pollution.
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the growing level of environmental awareness and increasing complexity of pollution moni-

toring, it appears to be the appropriate time for the country’s environmental authority to

engage local citizens in the management of pollution more actively.

The call for these governance changes has been made possible through information and

communication technology (ICT). It is highly cost-effective for the central and local environ-

mental authorities to improve public communication and engagement using e-governance.

Some examples include the real-time disclosure of monitoring data to the public and mobile

applications that encourage citizens to report pollution incidents.26 Regulators could in turn,

gather more accurate information and take corresponding actions. As a case in point, local

governments in Qingdao and Linyi in Shandong Province have provided speedy follow-up

to public claims on their social media (Weibo) accounts.27 Moreover, an increasing number

of provinces are launching their own online platforms for air pollution disclosure, on which

detailed data obtained from various monitors are accessible to the public. As a promising

tool, environmental information disclosure not only facilitates individual avoidance behavior

but also allows local residents to supervise the monitors and check the consistency of the

data.

8 Conclusion

Weak enforcement of environmental laws remains a global issue. At the heart of it lies a

classic principal-agent problem between central and local governments. Imperfect monitoring

and misaligned incentives could result in strategic compliance at the local level. While

advanced monitoring technology has been proposed as a solution to this problem, there has

been very little direct empirical evidence of its efficacy.

We offer comprehensive evidence of the impact of a large-scale automated monitoring

26Some e-platforms request that the public submit evidence such as geo-coded images of

pollution occurring produced by a specific industry or business.

27See the news report by Xinhua for details.
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program on local air pollution in China. Our study finds that areas near automated mon-

itors experienced a 3.2% decrease in pollution relative to areas farther away. Although the

quality of the pollution data from monitoring sites has substantially improved, the spatial

gaps in monitoring coverage appear to incentivize local officials to take localized pollution

control measures that target only monitored areas rather than engaging in systematic reduc-

tions that would benefit broader regions and populations. Such localized efforts weaken the

spatial representativeness of the monitoring system, leading to biased policy evaluations and

affecting environmental justice in the long run. Our study also reveals that in the Chinese

context, political institutions and incentive scheme designs, of which career concerns are

a key component, appear to affect the degree of strategic conduct at the local level. The

pollution gap between monitored and unmonitored areas is shown to be larger for cities with

a history of data manipulation, in cities with officials facing stronger career incentives, and

in cities with less civic participation in pollution monitoring.

Our analyses present important implications for the design of effective regulatory methods

that incentivize meaningful changes to limit pollution. Central regulators should comple-

ment the existing ambient pollution monitoring system with a combination of information

from ground-level monitors, advanced monitoring techniques, and public input in order to

accurately evaluate local officials’ environmental performance and improve air quality city-

wide. In particular, it may help when the pressures come from outside the system. When

pollution is publicly observed and draws a fair amount of attention, the state must respond

effectively in an effort to retain its legitimacy.
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Figure 1: The Timeline of Monitoring Station Automation

Notes: This figure displays the spatial distribution of monitoring stations that were auto-
mated in three waves, which took place in 2012, 2013 and 2014, respectively.
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Figure 2: Event Study: The Effect of Monitor Automation on City-Level Pollution

Notes: This figure presents the regression coefficients and their 95% confidence
intervals from an event study of the monitor automation’s effect on the pollution
level of all grids within a city, following Equation 2. The omitted time category
is the year before a city joined the automatic monitoring program. The regression
includes cell fixed effects and year fixed effects, along with flexible interactions
between year dummies and an array of pre-treatment city characteristics (such
as average GDP, population and PM2.5 at the city level from 2008 to 2011 and
the maximum distance between cells and monitors within a city and a dummy
indicator for an environmental priority city), and city-level concurrent PM10 and
PM2.5 reduction targets. Standard errors are clustered at the city level.
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Figure 3: Event Study: The Effect of Automation on Air Pollution within 3km of A
Monitor

Notes: This figure plots the estimated coefficients and their 95% level confidence
intervals for βn from Equation (3). Each estimate represents the difference in PM2.5

between monitored areas (cells within 3km of monitors) and unmonitored areas
(cells outside the 3km radius) at a given period (also reported in Table A10). The
omitted time category is the year before a city joined the automated monitoring
program. The regression includes cell fixed effects and year fixed effects, along
with flexible interactions between year dummies and an array of pre-treatment city
characteristics (such as average GDP, population, and PM2.5 at the city level from
2008 to 2011, the maximum distance between cells and monitors within a city and
a dummy indicator for an environmental priority city), and city-level concurrent
PM10 and PM2.5 reduction targets. Standard errors are clustered at the city level.
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Figure 4: Effects of Automation on lnPM2.5 at Different Distances from Monitors

Notes: This figure plots the estimated coefficients and their 95% level confidence
intervals for the effects of monitor automation on the satellite-based lnPM2.5 at
different distance bins from the monitor. Each point estimate represents the pollu-
tion change in each distance bin relative to the baseline group at the outer range
(distance to monitor >150 km), which on average experiences a 4.5% pollution
increase. The absolute effect becomes positive above the dotted line. The regres-
sion includes cell fixed effects and year fixed effects, along with flexible interactions
between year dummies and an array of pre-treatment city characteristics (such as
average GDP, population, PM2.5 at the city level from 2008 to 2011, the maximum
distance between cells and monitors within a city and a dummy indicator for an
environmental priority city), and city-level concurrent PM10 and PM2.5 reduction
targets. Standard errors are clustered at the city level.

47



Figure 5: The Location of Thermal Anomaly Hotspots and Plants

(a) Industrial Plants

(b) Power Plants

Notes: These figures compare the locations of thermal anomaly hotspots and ma-
jor polluting plants. Panel (a) compares the location of 1,829 heavily polluting
industrial plants to the presence of 20,134 satellite-based thermal anomaly points
(static hot spots) in 2016. These plants were drawn from the MEE’s Key Centrally
Monitored Polluting Enterprises database. Panel (b) shows the location of power
plants and thermal anomaly points in 2014 and 2017, respectively. The power
plant locations were obtained from the China Emissions Accounts for Power Plants
(CEAP) database. There are 10,491 power plants and 82,082 thermal anomalies
static hot spots from 2014 to 2017. The inset represents the Beijing-Tianjin-Hebei
Urban Agglomerates.
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Figure 6: Heterogeneity Analysis by Pre-Automation Status: Event Study Results

Notes: This figure plots the estimated coefficients and their 95% level confidence
intervals for the interaction terms between year-specific automation treatment ef-
fects and the indicators for three subsamples of cities. Each estimate represents
the difference in PM2.5 between monitored areas (cells within a 3km radius of the
monitors) and unmonitored areas (cells more than 3km away from the monitors)
at a given period for each subgroup. Cities with monitors before the program are
divided according to their pre-automation pollution reading manipulation status,
obtained using the local linear RD estimates in Greenstone et al. (2022). “Up-
graded Monitor: w/ manipulation” refers to cities that experienced sudden drops
in pollution levels directly following monitor automation, which is indicative of
pre-automation data manipulation. “Upgraded Monitor: w/o manipulation” refers
to those cities with negative RD estimates, indicative of no pre-automation data
manipulation. The omitted time category is one year before a city joined the auto-
matic monitoring program. The regression includes cell fixed effects and year fixed
effects, along with flexible interactions between year dummies and an array of pre-
treatment city characteristics (such as average GDP, population, PM2.5 at the city
level from 2008 to 2011, the maximum distance between cells and monitors within
a city and a dummy indicator for an environmental priority city), and city-level
concurrent PM10 and PM2.5 reduction targets. Standard errors are clustered at the
city level.

49



Figure 7: Heterogeneity Analysis by Local Government Incentives

(a) Promotion Likelihood

(b) Pollution Reduction Target

Notes: This figure shows the estimated coefficients and 95% confidence intervals for the year-specific automation
treatment effects in two subsamples of cities based on their leaders’ likelihood of promotion and the pollution
reduction targets assigned. Each estimate represents the difference in PM2.5 between monitored and unmonitored
areas for a given period and subgroup. We estimate the likelihood of promotion for city leaders following Wang,
Zhang and Zhou (2020), where leaders (party secretaries) above/below the provincial median are considered of
high/low promotion likelihood. In the bottom figure, cities are split into two groups based on pollution reduction
targets from 2013 to 2017. “Have Pollution Reduction Target” refers to the city with a target specified in government
documents, while “No Pollution Reduction Target” refers to cities that are only required to maintain their baseline
pollution levels. The omitted time category is one year before a city joined the automatic monitoring program. The
regression includes cell fixed effects and year fixed effects, along with flexible interactions between year dummies
and an array of pre-treatment city characteristics (such as average GDP, population, PM2.5 at the city level from
2008 to 2011, the maximum distance between cells and monitors within a city and a dummy indicator for an
environmental priority city). Standard errors are clustered at the city level.
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Figure 8: Heterogeneity Analysis by Local Public Pressure: Event Study Results

Notes: This figure plots the estimated coefficients and their 95% level confidence in-
tervals for the interaction terms between year-specific automation treatment effects
and indicators for two subsamples of cities classified by local residents’ attention
to environmental issues. Each estimate represents the difference in PM2.5 between
monitored areas (cells within a 3km radius of the monitors) and unmonitored areas
(cells beyond a 3km distance from the monitors) at a given period for each subgroup.
Above National AVG indicates provinces with above-median per capita complaints
about environmental issues in 2017. The omitted time category is one year before
a city joined the automatic monitoring program. The regression includes cell fixed
effects and year fixed effects, along with flexible interactions between year dummies
and an array of pre-treatment city characteristics (such as average GDP, population
PM2.5 at the city level from 2008 to 2011, the maximum distance between cells and
monitors within a city and a dummy indicator for an environmental priority city),
and city-level concurrent PM10 and PM2.5 reduction targets. Standard errors are
clustered at the city level.
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Table 1: Descriptive Statistics

Variables N Mean Sd Min Max

(1) (2) (3) (4) (5)

Panel A: Cells and Satellite-Based Pollutants
PM2.5 (ug/m3) 10,413,717 35.219 27.234 0.111 223.889
Distance to monitor (km) 10,413,717 160.423 149.877 0.031 873.008
Auto 10,413,717 0.438 0.496 0 1
(0-3km) 10,413,717 0.003 0.059 0 1

Panel B: Satellite-Based Economic Activity Measures
Fire Radiative Power(FRP) 10,413,717 0.070 1.392 0 794.400
Days 10,413,717 0.018 0.984 0 554.000
1(TAP) 10,413,717 0.006 0.078 0 1.000

Panel C: City Socio-Economic Characteristics
Population in 2015 (person) 10,413,647 907.720 4,585.402 0.000
GDP2008−2011 (1 billion¥) 330 75.408 111.389 1.443 1,097.079
Number of monitors in a city 330 10.552 6.845 0 46.000
Maximum distance between monitors and cells (km) 330 153.722 123.273 18.187 873.008
Environmental priority city indicator 330 0.336 0.473 0 1.000
PM2.5 reduction targets 1,340 3.300% 8.700% 0.000 55.000%
PM10 reduction targets 1,340 3.400% 4.700% 0 25.000%
Pre-automation manipulation indicator 123 0.561 0.498 0 1.000
High Promotion likelihood 327 0.468 0.500 0 1.000
Number of environmental complaints reported 31 19,963.100 21,098.130 28 105,601

Notes: Observations are at the cell-year level. Each cell has a 3km×3km resolution. In Panel A, PM2.5 is satellite-
based PM2.5 measured for each cell. Distance to monitor is the distance between a cell and its nearest monitoring
station. Auto is the treatment indicator that equals one after a city has joined the automatic monitoring program.
(0-3km) is a dummy variable that equals one for cells located within a 3km radius around monitoring stations. In
Panel B, Fire Radiative Power (FRP) is a measure of the average intensity of thermal anomalies, defined as the
rate of radiant heat output, which is related to the rate at which fuel is consumed and smoke emissions are released.
Days measure the annual number of days with active thermal anomalies in each cell. 1(TAP) denotes 1(Thermal
Anomalies Presence), which is a dummy variable that equals one if there are thermal-related economic activities
in a given cell in a given year. In Panel C, the population in 2015 (person) denotes the cell-level population.
GDP2008−2011 (in 1 billion¥) denotes the average city-level GDP from 2008 to 2011. Number of monitors in a
city denotes the details of the treatment received. Maximum distance between monitors and cells denotes a city’s
geographical size. Environmental priority city indicator is a dummy variable denoting whether or not a city is
an environmental priority city. PM10 reduction targets and PM2.5 reduction targets denote concurrent policies—-
city-level PM2.5 and PM10 pollution control targets from the Air Pollution Prevention and Control Action Plans
from 2014 to 2017. Pre-automation manipulation indicator is a dummy variable denoting whether or not a city’s
environmental data had previously been manipulated (before automation), as calculated using the algorithm in
Greenstone et al. (2022). High Promotion likelihood is a dummy variable that indicates the likelihood of promotion
for city leaders is above the provincial median, as calculated using the algorithm in (Wang, Zhang and Zhou 2020).
Number of environmental complaints reported denotes the number of complaints from the public on environmental
issues(at the provincial level due to data availability).
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Table 2: Localized Cleanup Response to Monitoring Program Automation

Dependent variable: ln(PM2.5)

(1) (2) (3) (4) (5) (6)
Unmonitored Areas: >3km >3km >3km >3km >3km >60km

Auto 0.052** -0.001 0.052** -0.010 -0.0004 -0.004
(0.023) (0.023) (0.023) (0.023) (0.023) (0.032)

(0-3km)×Auto -0.091*** -0.032*** -0.032*** -0.054***
(0.022) (0.010) (0.011) (0.021)

CellFE X X X X X X
Year FE X X X X X X
Year FE × citypopulation2008−2011 X X X X
Year FE × PM2008−2011

2.5 X X X X
Year FE × Other City-level Controls X X X
Concurrent Policy X X X
Observations 10,413,717 10,413,717 10,413,717 10,413,717 10,413,717 7,582,459
R2 0.966 0.975 0.966 0.974 0.975 0.976
Notes: This table reports the effects of the monitor automation program on the satellite-based lnPM2.5. lnPM2.5
is the natural logarithm of the cell-level yearly satellite-based PM2.5. Auto is the treatment indicator that equals
one after a city has joined the automatic monitoring program. (0-3km) is a dummy variable that equals one if
the cells are located within a 3km radius of a city’s monitoring stations. Columns (1)–(6) use cells within 3km of
the monitor as the monitored group, comparing them with different unmonitored groups: cells beyond 3km from
the monitors in columns (1)–(5) and 60km from the monitors in column (6), respectively. PM2008−2011

2.5 is average
city-level PM2.5 during the 2008–2011 period and citypopulation2008−2011 is the average city population from 2008
to 2011. Other city-level controls are the average city-level GDP from 2008 to 2011, the number of monitors in each
city, the maximum distance between cells and monitors within a city, a dummy variable that indicates whether or
not a city is an environmental priority city. The Concurrent Policy refers to the city-level concurrent PM10 and
PM2.5 reduction targets. Standard errors are clustered at the city level. Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 3: Robustness Check: Test for Mean Reversion and Entropy Balancing

Dependent variable: ln(PM2.5)

(1) (2) (3) (4)
Unmonitored Areas: >3km >3km >3km >3km

Auto 0.077*** 0.018 -0.001 0.020
(0.026) (0.024) (0.023) (0.017)

(0-3km)×Auto -0.086*** -0.031* -0.022** -0.031***
(0.031) (0.015) (0.011) (0.021)

Auto×Dirtier -0.048*** -0.035**
(0.018) (0.017)

(0-3km)×Auto×Dirtier 0.014 0.013
(0.022) (0.019)

CellFE X X X X
Year FE X X X X
Dirtier × Time dummy X
Year FE × citypopulation2008−2011 X X
Year FE × PM2008−2011

2.5 X X
Year FE × Other City-level Controls X X
Concurrent Policy X X
Entropy Balancing X
Observations 10,413,717 10,413,717 10,413,717 9,362,369
R2 0.966 0.975 0.976 0.954
Notes: This table reports the effects of the monitor automation program on the satellite-
based lnPM2.5 in alternative specifications. lnPM2.5 is the natural logarithm of the cell-level
yearly satellite-based PM2.5. Auto is the treatment indicator that takes the value of one af-
ter a city has joined the automatic monitoring program. (0-3km) is a dummy variable that
equals one if cells are located within 3km of a city’s monitor. Dirtier is a dummy variable
that equals one if the lnPM2.5 of a cell is higher than the city’s average lnPM2.5 in 2008 (the
base year). Columns (1) and (2) include the (0-3km)×Auto×Dirtier and Auto×Dirtier to
test for mean reversion as an alternative explanation of the observed automation treatment
effects. Column (3) includes Dirtier × Year fixed effects. Column (4) reports the estima-
tion result when observations are re-weighted with entropy balance weights. All regressions
control for cell-fixed effects, year-fixed effects, and time dummy interactions. PM2008−2011

2.5

is average city-level PM2.5 during the 2008–2011 period and citypopulation2008−2011 is aver-
age city population from 2008 to 2011. Other city-level controls are the average city-level
GDP between 2008 and 2011, the number of monitors in each city, the maximum distance
between cells and monitors within a city, and a dummy variable that indicates whether or
not a city is an environmental priority city. The Concurrent Policy refers to the city-level
concurrent PM10 and PM2.5 reduction targets. Standard errors are clustered at the city
level. Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 4: Mechanism of Localized Cleaning: Industrial Activities (Thermal Anomalies)

(1) (2) (3) (4) (5)
VARIABLES 1(TAP) ln(Days+1) ln(FRP+1) ln(Days+1) ln(FRP+1)

Auto 0.368*** -0.0348 -0.0526 0.000768 0.000523
(0.0111) (0.0376) (0.0414) (0.0142) (0.0131)

Marginal Effect 0.0904*** -0.00969 -0.0335
(0.00264) (0.0105) (0.0264)

(0-3km)×Auto -0.410*** -0.307*** -0.253*** -0.0917*** -0.0170
(0.0435) (0.0397) (0.0380) (0.0212) (0.0157)

Marginal Effect -0.101*** -0.0856*** -0.161***
(0.0107) (0.0111) (0.0242)

Cell FE X X X X X
Year FE X X X X X
Year FE × citypopulation2008−2011 X X X X
Year FE × PM2008−2011

2.5 X X X X
Year FE × Other City-level Controls X X X X
Concurrent Policy X X X X
Model Logit Poisson Poisson OLS OLS
Sample All All All 1(TAP) 1(TAP)
Observations 227,750 233,760 233,750 52,099 52,099
R-squared 0.721 0.552
Notes: This table reports the effects of the monitor automation program on thermal anomalies. Column
(1) uses a logit regression model. Columns (2) and (3) use a Poisson regression model. Columns (4) and (5)
use an OLS model. For the logit regression model and the Poisson regression model, the marginal effects
are also reported. Column (1) reports the results using a dummy indicator of thermal anomalies presence
(TAP), denoted by 1(TAP), which is equal to one if thermal-related economic activities are present in a cell
in that year. Column (2) reports the results for the number of days with active thermal anomalies using
the full sample, which measures the operating time of industrial plants in each cell. Column (3) reports
the results for the average intensity of thermal anomalies, denoted by ln(FRP+1). FRP is defined as the
rate of radiant heat output, which is related to the rate at which fuel is consumed, and smoke emissions
are released. We use the natural logarithm of (FRP+1) and (Days+1) to tackle zero observations. Column
(4) reports the effect of automation on the logarithm of the number of days with active thermal anomalies
by restricting the sample to only those grid cell-year observations when 1(Thermal Anomalies Presence) is
equal to one. Column (5) reports the effect of automation on the average intensity of thermal anomalies per
day (denoted by ln(FRP+1)) when 1(Thermal Anomalies Presence) is equal to one. Auto is the treatment
indicator that takes the value of one after a city has joined the automatic monitoring program. (0-3km) is a
dummy variable that equals one if cells are located within 3km of a city’s monitoring stations. PM2008−2011

2.5 is
average city-level PM2.5 over the 2008–2011 period and citypopulation2008−2011 is average city population from
2008 to 2011. Other city-level controls are the average city-level GDP between 2008 and 2011, the number of
monitors in each city, the maximum distance between cells and monitors within a city, and a dummy variable
that indicates whether or not a city is an environmental priority city. The Concurrent Policy refers to the
city-level concurrent PM10 and PM2.5 reduction targets. Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 5: A Re-evaluation of Policy Goals Set in the “Air Ten” Action Plan

Region PM2.5 in 2013 PM2.5 in 2017 Change of PM2.5

(1) (2) (3)

Panel A: Based on Ground-monitor Readings
Whole Country 47.012 35.451 -24.59%
Beijing-Tianjin-Hebei 73.802 48.377 -34.45%
Panel B: Based on City-wide Satellite Data
Whole Country 43.485 42.358 -2.59%
Beijing-Tianjin-Hebei 68.706 58.649 -14.63%

Panel C: Based on Monitored Area Satellite Data
Whole Country 51.768 49.163 -5.03%
Beijing-Tianjin-Hebei 82.101 64.188 -21.82%

Panel D: Based on Satellite Data in (3-30)km Cell
Whole Country 46.212 44.331 -4.07%
Beijing-Tianjin-Hebei 73.071 60.552 -17.13%

Panel E: Based on Satellite Data in (30-60)km Cell
Whole Country 43.828 42.445 -3.16%
Beijing-Tianjin-Hebei 67.059 58.453 -12.83%

Panel F: Based on Satellite Data in (60-90)km Cell
Whole Country 41.386 40.437 -2.29%
Beijing-Tianjin-Hebei 55.036 52.012 -5.49%

Panel G: Based on Satellite Data in (>90)km Cell
Whole Country 37.495 37.387 -0.288%
Beijing-Tianjin-Hebei 55.324 54.556 -1.39%

Notes: This table presents pollution reduction estimates from 2013 to 2017 for the whole country and the Beijing-Tianjin-Hebei region specifically.
Columns (1) and (2) report residualized pollution outcomes (unit: µg/m3), which are obtained from an OLS regression of city-level PM2.5

concentration on city fixed effects in 2013 and 2017, respectively. Column (3) denotes the change in air pollution during the “Air Ten” Action Plan
period. Panel A is based on satellite data of grid cells within 3km of monitors. Panel B uses citywide satellite data. Panel C shows reductions in
satellite-based pollution directly at the monitored areas, while Panels D to G report pollution reductions in rings at different distances from the
monitored areas.
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Appendices

A1 Institutional Details and Evidence on Strategic Cleaning

A1.1 Environmental Regulations in China

In this section, we review three particular regulatory policies that change the evaluation rules

for local officials and thus directly affect their incentives for pollution control. The major pol-

icy document that set the stage for China’s “war on pollution” is the “Action Plan for Air Pol-

lution Prevention and Control” (Air Ten hereafter), announced in September 2013. To better

implement the Air Ten at the local level, the Ministry of Ecology and Environment (MEE),

Chinese equivalence of EPA, signed a “Target Responsibility Agreement (mubiao zerenshu)

for Atmospheric Pollution Prevention and Control” (Target hereafter)—essentially perfor-

mance contracts–with 31 provinces after Air Ten was issued. Another key document, titled

“Notice of the General Office of the State Council on Performance Assessment Measures for

Air Pollution Prevention and Control Action Plan” (Document NO. GUOBANFA[2014]21,

Assessment hereafter), issued on April 30th, 2014, provides more details on environmental

performance assessment metrics with respect to the Air Ten action plan. Table A1 of the

Appendix contains further detail on the three documents.

The key points of these documents are summarized below:

(1) Air Ten—Air Ten set the national guidelines on air quality improvement targets

and laid out ten tasks. These tasks include industrial upgrading, clean production,

management of coal and oil sources, regulation of coal-power plants, vehicle pollution

control, and so on.

(2) Target—Each provincial government signed its Target Responsibility Agreement with

the MEE. In the agreements, provincial leaders pledge to attain certain air pollution

reduction targets for the 2013-2017 period using the 2012 pollution level as the base.

There are two major components to the target: air quality targets and the progress
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with the ten tasks. Notably, the air quality targets vary across provinces: for some,

the focus was on reducing PM2.5 concentration levels, while for others, the goal was set

to reduce PM10. To ensure accountability and implementation, the provincial targets

are further decomposed and allocated to city governments, again through the target

responsibility system.

(3) Assessment—The Assessment lays out metrics of both the air quality targets and

tasks progress. The final score will be a minimum of two (both standardized to have

a full mark of 100).

(a) Air quality improvement is measured as the annual average concentration reduc-

tion rate of PM2.5 (PM10).The annual concentration of PM2.5 (PM10) of a city is

measured as the annual arithmetic mean concentrations across its central moni-

tors.

(b) Key tasks on the prevention and control of air pollution: a scoring system with

deduction points from violations to performance standards of the ten tasks, which

could also vary by provinces (An example of the deduction point is: “gas stations

in a region will be randomly checked for qualified fuel supply. Non-compliant fuel

sales will result in a penalty of 1 point.”).

(4) Assessment—Regions that fail to pass the annual assessment will face the following

penalties:

(a) Local leaders would be summoned for questioning by upper-level officials from the

province or other departments.

(b) Financial penalties will be imposed, such as a reduction in the central grants to

the local governments.

(c) The procedures for approving new projects that have environmental impacts will

be suspended.
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(5) Assessment—Falsification of monitoring data during the assessment results in a dis-

qualification result, followed by a serious investigation by the Supervision Organs.

A1.2 Local Government Documents and News articles Related to Strategic

Cleaning

In this section, we perform additional analysis on 121 local government documents that man-

date strategic cleaning in their pollution control action plans. In the upper panel of Figure

A1, we create a heat map to visualize the spatial distribution of those official documents. In

the lower panel, we plot the histogram of the related distance range mentioned.

We further present collaborative evidence from news articles in support of the channels of

strategic cleaning. First, some local governments have targeted air pollution near the ground

monitors for strategic intervention using water or water vapor. Since the monitor locations

are well known by local officials, they sometimes sprayed water in adjacent areas or targeted

fog cannons at the monitors (a high-risk yet effective approach) or toward other subjects

near the monitors (lower risk, but less effective). As a case in point, in January 2018, it

was reported that the Environmental Protection Agency’s office building in Shizhuishan,

a city of Ningxia Province, where a central monitor is located, was turned into an “ice

sculpture” after being targeted by fog cannons.28 The next set of strategies involves various

traffic restriction policies targeted at the monitored areas. An official report by Tianjin’s

environmental inspection team documented the strategic use of temporary traffic control

plans by the local agency.29 The media also reported incidents in which the gas stations near

the monitors in Pingdingshan City were temporarily shut down, again a carefully calibrated

approach taken by the local government to improve air quality in the immediate area around

28Source: CCTV.

29See “The Central Environmental Protection Supervision Team: A short-cut plan to

guarantee good air quality is set up around the Tianjin Monitoring Station” (dated on July

29th, 2017) for an example. Source: The Paper (a leading Chinese digital newspaper).
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the monitors.30 A longer-term strategy was to shut down major sources of pollution to

unmonitored suburban areas.31

A1.3 Examples of Government Documents on Strategic Cleaning

1.Spraying Water

Title: Notification on the Issuance of the Implementation Plan for the Prevention and

Control of Air Pollution in Baiyin City in 2017 by the Office of the People’s Government of

Baiyin City

Document Number: Municipal Office [2017] No. 39

Issue Time: 2017.03.27

Related Content: 3. Comprehensive Implementation of Dust Control Measures (12) En-

hance the efforts in dust control on roads, fully implement road sprinkling and spraying

operations to reduce dust, especially within a one-kilometer radius around two

monitoring stations, and increase the frequency of sprinkling to keep the road surface

moist. Before and after sand and dust weather events, carry out comprehensive sprinkling

30See news and media coverages of the existing manipulation strategies by Xinhua,

Chinanews, and The Economic Daily for more details.

31See “Linfen Data Falsification Case: One Year Later, Part of Shanxi’s Environmental

Information Still Undisclosed” (dated May 10, 2019) for an example. Source: Chinatimes.
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and spraying to reduce dust. Baiyin District will conduct environmental sanitation man-

agement work at the entrances and exits of the city in the southeast, northwest, and other

directions. Reasonable locations will be selected for car washing points, and construction

vehicles carrying mud will be prohibited from the roads. Additionally, measures such as

sprinkling to reduce dust, establishing green belts, comprehensive roadside garbage cleaning,

and regular cleaning will be implemented to solve the problem of dust pollution effectively.

(Responsibility: Baiyin District Government, Implementation timeframe: Full year)

2.Ban the Coal-fired boiler/ polluted firms and Spray Water

Title: Notification on the Issuance of the Task Decomposition Plan for the Prevention and

Control of Air Pollution in Xuzhou City in 2014 by the People’s Government of Xuzhou City

Document Number: Xu Zhengfa [2014] No. 47

Issue Time: 2014.07.17

Related Content: 38. Completely ban coal-fired boilers and open-air barbecues

within a one-kilometer radius around seven air quality monitoring stations in the

urban area. Encourage catering enterprises that meet environmental protection require-

ments to implement three-dimensional greening and sprinkler measures, strengthen traffic

diversion, promote wet cleaning, and reduce secondary dust and vehicle exhaust pollution.

3.Vehicle Restriction

Title: Notification on the Issuance of the Special Action Plan for the Control of Cooking

Issue Time: 2017.07.11

Related Content: Oil Fume Pollution in the Central Urban Area of Ji’an City and the

Special Action Plan for the Control of Motor Vehicle Exhaust Pollution in Ji’an City by the
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Office of the People’s Government of Ji’an City

(5) Organize the diversion and prohibition of trucks in a scientific manner. Develop

control plans for the prohibition and restriction of trucks on major roads within

a 3-kilometer radius of the central stations. The plans will specify prohibited and

restricted areas, time periods, and vehicle types, and appropriate signage will be installed.

Heavy-duty freight vehicles passing through the central urban area will be required to take

detours at remote locations, and crossing the main urban area will be strictly prohibited.

Cement tankers, construction waste transporters, and specialized vehicles involved in urban

construction will be subject to strict limitations on operating time and routes. For freight

vehicles related to public livelihood, the Public Security Traffic Management Department

will conduct a rigorous vehicle approval process, following the principles of “avoiding peak

hours, staying away from the city center, and entering during nighttime” to approve the

designated times and routes for passage.

4.Ban Open-Air Barbecues

Title: Notification on the Issuance of the Work Plan for the Prevention and Control of Air

Pollution in Guiyang City in 2015 by the People’s Government of Guiyang City
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Document Number: Zhu Fu Fa [2015] No. 26

Issue Time: 2015.06.23

Related Content: (3) Strengthen the standardized management of night market barbecue

stalls. Place a special emphasis on regulating open-air barbecues and strictly restrict and

regulate open-air barbecues in the urban area. Particularly, take decisive actions to

prohibit unregulated emission of pollutants from barbecue sites within a one-

kilometer radius of automatic air monitoring stations.

A2 Additional Data Details and Robustness Checks

A2.1 Satellite-based PM2.5 Data

Our main dependent variable is the annual AOD-based PM2.5 data compiled by Van Donke-

laar et al. (2016b). We note, however, that the monthly level data were also made available

in a more recent data release by Van Donkelaar et al. (2021).

As detailed in the reference, annual and monthly ground-level fine particulate matter

(PM2.5) for 1998–2021 were estimated by combining Aerosol Optical Depth (AOD) retrievals

from the NASA MODIS, MISR, and SeaWIFS instruments with the GEOS-Chem chemical

transport model, and subsequently calibrating to global ground-based observations using a

Geographically Weighted Regression (GWR). Meanwhile, raw satellite AOD data are avail-

able at the daily level, but their temporal resolution largely depends on satellite coverage.

For example, the NASA MODIS instrument collects AOD data every 1 to 2 days from two

satellites, Terra and Aqua, which only record AOD on cloud-free days and are sensitive to

light surfaces and other weather conditions, leading to missing values at the daily or even

weekly level.

Here we assess the pros and cons associated with more- and less-aggregated data. In

particular, we examine the correlation between ground-based and AOD-based PM2.5 data at

the annual and monthly levels, respectively. As shown in Figure A2, there appears to be a

stronger correlation at the annual level. This is possibly due to the fact that satellite-based
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PM2.5 measures are subject to idiosyncratic measurement errors from time to time, such as

cloud covers, light interference, and other temporal meteorological variations, but can be

smoothed out over longer time periods.

Relatedly, we also assess the quality of satellite-based PM data by checking the correla-

tion between AOD-based and ground-based pollution measures before and after automation.

However, note that monitoring stations in China only recorded PM10, not PM2.5 prior to

automation, so we could only investigate the correlation between AOD-based PM2.5 and

ground-based PM10 throughout the sample period. As shown in Figure A3, the correlation

becomes strong after automation. We interpret it as evidence of data quality change: PM10

data before automation were subject to tampering and were not reliable, as documented by

(Greenstone et al. 2022). Automation has improved the accuracy and reliability of ground

station data.

A2.2 Robustness Checks to Address Satellite-base PM2.5 Measurement Errors

Using Raw AODData As discussed above, the AOD-based PM2.5 data were derived from

raw satellite images, and the calibration procedure also required information from ground-

based monitoring stations. Specifically, the Geographical Weighted Regression method as-

signs larger weights to areas closer to ground monitors and smaller weights to areas that are

farther away. One might worry that the resulting measurement errors are correlated with

the distance to monitors and could also be systematically linked to the establishment of new

ground monitors. Beyond the validation evidence in Section 3, we conduct our own analysis

with raw AOD measurements as an alternative outcome indicator. The pertinent results

are reported in Table A2 and Figure A4. Reassuringly, they are largely consistent with the

baseline estimates.32

32The estimated coefficients are smaller with AOD as the outcome, largely because the

raw satellite images are sensitive to meteorological conditions (e.g., cloud coverage). In the

case of extreme conditions such as haze and fog events, which tend to be associated with

heavily-polluted time periods and regions, AOD data may be missing or become unreliable.
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Using Satellite-based Pollution Measures at Finer Temporal Variation We fur-

ther explore the potential aggregation bias, also known as the “ecological fallacy”, associated

with annual data (Banzhaf, Ma and Timmins 2019). To this end, we re-run analyses on

monthly AOD-based PM2.5 data and other monthly moments (the maximum and minimum

value of daily observations in a month) of raw AOD data.

In order to assess the relevance of aggregation bias, consider the daily regression form of

Equation (1) below:

ln(PM2.5icdt) = αAutoct + βNeari × Autoct + γXct + Cellid + Y eart + εict (1)

Where i and c denote the cell and the city, as previously defined; d denotes the day, and

t denotes the year. Aggregating the daily regression to the yearly level means that we can

no longer control for the cell-by-day-of-year-fixed effects (Cell × day of the year), which

essentially capture location-specific within-year daily or seasonal patterns of pollution–for

example, cells near a factory would be polluting during working days, especially in the

summer, but not during weekends. Because of this distinction, estimation biases would

arise in the aggregated vis-à-vis disaggregated level when these within-year daily patterns

differ (non-causally) before and after automation. We conduct our own analysis to partially

evaluate the extent of this omission. In particular, we use a variant of Equation (1) that

is based on monthly data. We then estimate β with and without the inclusion of cell-by-

calender-month fixed effects (Cellid). The results are reported in Table A3 (also in Figure

A5). As shown, they are consistent with our baseline estimates obtained using the annual

data, as reported in Table 2. The estimated β with our preferred specification (Column 5)

is -0.025, compared to -0.032 in the baseline specification.

Thus, without considering such spatial and temporal meteorological variations, the annual

average effect estimated from the daily AOD observations (which partially average out) is

likely to be small.
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Another issue about analyses based on the annual data is that temporal aggregation might

discard information: it averages out the rich variation in the heterogeneity of β across clean

and dirty days. The same average treatment effect at the aggregated level could represent

very different compositions of individual treatment effects across different days. And the

different compositions might entail different welfare implications. Just to take one example

(conceptually), if local governments attempted to reduce pollution during clean days but

increase pollution during dirty days, the resulting health costs could be much greater than

those if pollution was reduced during dirty days and increased during clean days, even though

the annual average change in pollution levels remained the same under these two scenarios.

To shed light on the potential distributional effects, we collect daily raw AOD data, which

is the highest resolution possible, and collapse them to the monthly level. This allows

us to obtain monthly summary statistics, including the mean, maximum, and minimum

values, which can offer a deeper understanding of the within-month distributional response

to automation. The results are reported in Table A4. Our findings indicate that monitoring

station automation reduced the AOD levels across all three measures. However, the largest

log-point change was observed for max AOD. This result indicates that automation likely

leads to a reduction in pollution across the entire distribution, but with greater strategic

cleaning efforts observed around the monitors during extreme pollution days.

Bias Correction with Multiple Imputation Lastly, we address measurement errors

due to remote sensing by following the lead of Proctor, Carleton and Sum (2023) in utiliz-

ing multiple imputation methods to establish the relationship between AOD-imputed PM2.5

values and ground-based monitoring data. Specifically, we employ bootstrap sampling to

randomly select 70% of the ground-based monitoring data, and then generate the remaining

30% of the sample through multiple imputations for 100 times. We then utilize that sample

of 70% original data and 30% imputed observations to perform regression analysis and sim-

ulate the relationship between satellite PM2.5 values and their corresponding ground-based

A10



readings.

Following that, we predict PM2.5 values for all grids in our main dataset using the satellite

data and the regression model derived in the previous step. Subsequently, we employ the

corrected PM2.5 values to repeat our baseline regressions. To account for both sample and

imputation uncertainty, we repeat the process of random sampling and prediction 100 times.

The results are robust, as reported in Appendix Table A5.

A2.3 Heterogeneous Treatment with Staggered DiD

This section discusses potential biases arising from the traditional two-way fixed effects

(TWFE) estimator in a staggered difference-in-differences design. These biases can arise

when early treated units are used as control groups for later treated ones, particularly when

there are heterogeneous dynamic treatment effects (Goodman-Bacon 2021; De Chaisemartin

and d’Haultfoeuille 2020; Sun and Abraham 2021; Callaway and Sant’Anna 2021).

To address this issue, we first employ a Goodman-Bacon decomposition of the DiD es-

timation that regresses the pollution gap between monitored and unmonitored areas on the

staggered treatment of monitor automation in a city-year panel. Figure A6 plots the average

treatment effect against the weight of each of the six 2×2 comparison groups in the present

study. It appears that the average effects of the three early versus later treated groups (i.e.,

Wave 1 vs. 2, Wave 2 vs. 3, and Wave 1 vs. 3) concentrate around -0.003 and are very

close to the TWFE estimator of -0.0039. The sum of the weights of all the earlier versus

later groups adds up to more than 50%. Of the three later versus earlier treated groups,

which tend to introduce biases to the TWFE estimate, the share of Wave 3 versus Wave 1

and that of Wave 3 vs. Wave 2 add up to 26.7% and 10.3%, respectively. Therefore, we

exclude monitors treated in Wave 3 from the treated units and repeat the analysis, again us-

ing the triple-difference specification and lnPM2.5 concentrations as the outcome variable.33

The estimation results are presented in Table A6. Specifically, in our preferred specification,

33To maximize identification power from the earlier versus later treated comparison, we

switch the treatment status of all monitors treated in Wave 3 to untreated in years 2014
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Column (3) shows that the triple difference estimator, i.e., the coefficient of (0-3km)×Auto,

increases from -0.032 of the baseline to -0.039 and remains statistically significant. In a

similar vein, the results on thermal anomalies are reported in Table A7.

In addition, we employ an alternative estimation approach proposed by Callaway and

Sant’Anna (2021), which estimates the group-time average treatment effects (ATTgt) sepa-

rately for all treatment cohorts (each group/cohort corresponds to units treated in the same

period) relative to never-treated or not-yet-treated control units, and aggregates all of them

into simpler parameters. Since the method only applies to a DiD setting, we modify our

triple-difference model into a DiD specification, using the pollution gap as the outcome vari-

able. As presented in Figure A7, the result is in line with that of our main triple difference

analysis: the pollution gap evolves in parallel between the treated and control monitors be-

fore the treatment, and drops significantly in the post-treatment period, implying that the

observed improvement in air quality around the monitors relative to the entire city is not

driven by biases in the TWFE estimators.

A2.4 Validation of Thermal Anomalies Data

Before proceeding to the empirical specification, we conduct a set of external validation

exercises. We start by assessing the geographical correlation between thermal anomalies and

polluting activities. To do so, we obtain two lists of major polluting plants: the first is drawn

from the MEE’s Key Centrally Monitored Polluting Enterprises database, which consists of

1,829 heavily polluting industrial firms. The other composes of 10,491 power plants, sourced

from the China Emissions Accounts for Power Plants (CEAP) database. Figure 5 maps

the locations of thermal anomalies along with the geographic distribution of those polluting

plants. It is clear from the figure that key centrally monitored industrial firms (Panel A)

and power plants (Panel B) are always located in spots with observed thermal anomalies,

and 2015, based on the assumption that treatment effects would not be realized in the first

year (most were treated in December 2014). We also drop all the post-2015 observations.
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although those industrial firms and power plants are more spatially dispersed. On that

basis, we argue that thermal anomalies provide sufficiently comprehensive coverage of major

polluting sources. At the extensive margins, Table A8 shows that, for each 10km-by-10km

cell, the presence of any thermal anomaly increases the probability of the presence of a

polluting plant by 99%. At the intensive margins, Column (2) of Table A9 shows that for

the sample of plant sites, a one percent increase in the radiant heat output around each

power plant (capturing the rate at which fuel is consumed and smoke emissions released)

is associated with a 0.14 percent growth in the satellite-derived PM2.5 measures from the

plant, confirming the quality of the thermal anomaly data.

We also test if short-run variations in thermal anomalies respond to temporary drastic

government measures on pollution. As a case in point, a series of strict emission control

policies were adopted in Beijing and the surrounding regions to ensure blue skies during

the 2014 Asia-Pacific Economic Cooperation (APEC) summit. Figure A8 presents the time

series of two measures of thermal anomalies one month prior to and one month following

the summit for the affected region of Beijing, Tianjin, and Hebei. Both indicators dropped

sharply preceding the event and picked up immediately after the summit ended. The ob-

served synchronized pattern again highlights the validity of the thermal anomaly measure in

measuring temporal variation in local pollution.

Ring Analysis with Thermal Anormalies Figure A9 further reports the impact of

monitor automation on thermal anomalies across different distance bins. The estimated

magnitudes of the responses of thermal-based industrial activities to automation decrease

as the distance from the monitors increases, which is consistent with the uneven pollution

reduction pattern documented in Section 4.3. However, the effect appears to be more local-

ized, with the reduction in industrial activities approaching zero at around 20 km away from

the monitors, compared to around 100 km for PM2.5 reductions. One possible explanation

is that the spatial impact of localized shutdowns of industrial sources on pollution could
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extend tens of kilometers away as pollutants disperse.

A3 Dynamic Monitor Representativeness

Using fine-scale pollution data and spatial information from the national environmental air

monitoring network, we examine the spatial representativeness of these monitors, defined as

the difference between the monitor-based and satellite-based city average PM2.5. First, we

use the 3km by 3km gridded population count from the 2015 National Population Census

as the weight for each cell and calculate the weighted average PM2.5 for each city. Taking

this estimate as the “true” city-level PM2.5, we then compare it with the monitor-based

population-weighted average PM2.5.

The map in Figure A10 (a) shades cities according to representativeness errors (i.e.,

how well the monitors capture average air pollution). The blue shading denotes that the

monitor under-represents a city’s average pollution. At the base year of our study period

(i.e., 2008), the monitoring system was indeed fairly representative for most Chinese cities,

and monitor locations are unlikely to change once they are placed.34 However, the spatial

representativeness of air quality monitoring is not static but an involving process that can be

profoundly shaped by local interventions that target monitored areas. Recall the estimate

for the localized pollution reductions in monitored areas: grid cells within a 3km radius of

monitors experience a 3.2% greater reduction in PM2.5 concentrations than those farther

away. Using this central estimate and the last year of the sample period (i.e., 2017), we

calculate the projected pollution levels for the five-year period from 2018 to 2022, as shown

in Figure A10 (b).35 The forecast suggests that some previously over-representative monitors

34The current air quality monitors in the U.S. were built two decades ago and covered

populated areas following federal guidelines. Other than adding new monitors to counties

that did not have them, the existing monitor locations have not changed since then.

35We do not extend the extrapolation beyond 2022 because of the large uncertainty and

the possibility of new regulations.
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seem to move closer to a city’s average air quality. However, the most striking result is that

monitors in approximately 52 cities are predicted to under-represent overall air pollution by

the end of 2022, having been greatly affected by dynamic local strategic conduct.
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Figure A1: Government Documents Mentioning “Strategic Cleaning”

(a) Spatial Distribution

(b) Strategic Cleaning Distance Range

Notes: Panel A shows the spatial distribution of 121 documents that di-
rectly mentioned strategic cleaning around monitors, while Panel B shows
the histogram of cleaning range (distance from the monitored) stated in
42 of them.
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Figure A2: Correlation between AOD-based and Ground-based PM2.5 Measurements

(a) Yearly Data

(b) Monthly Data

Notes: This figure depicts the correlation between AOD-based PM2.5 and
ground reading data. Panel A displays the correlation at the yearly level,
while Panel B shows the correlation at the monthly level. Ground reading
data for PM2.5 only became available after automation.
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Figure A3: The Correlation between AOD-based PM2.5 and Ground-based PM10 Before and
After Automation

Notes: This figure shows the correlation between yearly AOD-based PM2.5
and Ground-based PM10 reading data. The red and blue lines represent
the fitted linear relationship before and after automation, respectively.
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Figure A4: Robustness Check: Event Study of Monitor Automation, using AOD Raw Data

Notes: This figure plots the estimated coefficients and their 95% level confidence
intervals for βn from Equation (3), replacing PM2.5 with raw AOD data. Detailed
estimates are reported in Table A10. The omitted time category is one year before
a city joined the automatic monitoring program. Each estimate represents the
difference in ln(AOD) between monitored areas (cells within a 3km radius of a
monitor) and unmonitored areas (cells outside a 3km radius around a monitor)
at a given period. The regression includes cell fixed effects and year fixed effects,
along with flexible interactions between year dummies and an array of pre-treatment
city characteristics (such as average GDP, population, PM2.5 at the city level from
2008 to 2011, the maximum distance between cells and monitors within a city and
a dummy indicator for an environmental priority city), and city-level concurrent
PM10 and PM2.5 reduction targets. Standard errors are clustered at the city level.
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Figure A5: Event Study: The Effect of Automation on Air Pollution within 3km (Monthly)

Notes: This figure plots the estimated coefficients and their 95% level con-
fidence intervals for βn from Equation (3) by using monthly PM2.5 Data.
Each estimate represents the difference in PM2.5 between monitored areas
(cells within 3km of monitors) and unmonitored areas (cells outside the
3km radius) at a given period (also reported in Table A3). The omitted
time category is the year before a city joined the automated monitoring
program. The regression includes cell fixed effects and year fixed effects,
along with flexible interactions between year dummies and an array of
pre-treatment city characteristics (such as average GDP, population, and
PM2.5 at the city level from 2008 to 2011, the maximum distance between
cells and monitors within a city and a dummy indicator for an environ-
mental priority city), and city-level concurrent PM10 and PM2.5 reduction
targets. Standard errors are clustered at the city level.
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Figure A6: Robustness Check: Effects of Automation on Pollution Gap of Monitors,
Bacon Decomposition for Difference-in-differences

Notes: This figure shows each 2x2 DD estimate from the Bacon decomposition
Goodman-Bacon (2021) against their weight for the automation impact analysis.
The outcome variable is the pollution gap, defined as the difference between the
average pollution within a 3km radius of a monitor and the city’s average pollution
level. The horizontal dashed line is the difference-in-difference estimate with the
pollution gap as the dependent variable (-0.0039 at the 1% significance level). In
the Bacon decomposition, the estimate of the “Later vs. Earlier Treated” groups
equals -0.0051 and the weights are 0.50.
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Figure A7: Robustness Check: Event Study of Monitor Automation on Pollution Gap,
Group-Time Average Treatment Effect Estimation

Notes: This figure shows the aggregate event study result following the approach
of Callaway and Sant’Anna (2021). The sample includes the period from 2008 to
2015 and sets Wave 3 as the never treated group. The outcome variable is the
pollution gap, defined as the difference between the pollution level within 3km of a
monitor and the city’s average pollution level. All regressions control for cell fixed
effects, year fixed effects, and interactions between year dummies and the average
city population, and average city-level PM2.5 over the 2008–2011 period. Standard
errors are clustered at the city level.
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Figure A8: Validation of Thermal Anomalies Using the APEC Event

Notes: This figure shows the time series of the thermal anomalies mea-
sured shortly before and after the APEC event. Month 0 denotes the
month APEC was held (November 2014). FRP is defined as the rate of
radiant heat output, which is related to the rate at which fuel is consumed,
and smoke emissions are released.
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Figure A9: Effects of Automation on Thermal Anomalies at Different Distances from
Monitors

Notes: This figure plots the estimated coefficients and their 95% level confidence
intervals for the monitor automation effects on the number of days with active ther-
mal anomalies across different distance bins from the monitor. Each point estimate
represents the pollution change in each distance bin relative to the baseline group
at the outer range (distance to monitor >150 km), which on average experiences a
0.5% pollution increase. The absolute effect becomes positive above the dotted line.
The regression includes cell fixed effects and year fixed effects, along with flexible
interactions between year dummies and an array of pre-treatment city characteris-
tics (such as average GDP, population, PM2.5 at the city level from 2008 to 2011,
the maximum distance between cells and monitors within a city and a dummy indi-
cator for an environmental priority city), and city-level concurrent PM10 and PM2.5

reduction targets. Standard errors are clustered at the city level.
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Figure A10: Monitor Representation Errors: All Cells vs. Monitored Cells

(a) Representation Errors in 2008

(b) Representation Errors in 2022

Notes: This figure presents the monitor representation errors. Panel A shows
monitor representation errors at the base year of the study period (2008). Panel B
shows the predicted representation errors of monitors in 2022, which are calculated
based on the estimated pollution reductions in monitored areas (cells within a 3km
radius of monitors have experienced a 3.2% greater reduction in air pollution relative
to unmonitored areas), and are projected beyond the last year of the sample period
(2017). The representation error is defined as the percentage difference between
the population-weighted, satellite-based average pollution in monitored cells and
the average pollution across all cells within the city boundary. Negative measures
indicate under-representation by monitors.A25



Figure A11: Change in Environmental Authorities’ Responsibilities

(a) Before

(b) After

Notes: These two figures illustrate the roles and responsibilities of different envi-
ronmental authorities, before (Panel A) and after (Panel B) the introduction of
new standards. China National Environmental Monitoring Centre (CNEMC) is
a newly established institution directly under the management of the Ministry of
Environment and Ecology (MEE). It entrusts and oversees several third-party op-
erational institutes to operate and maintain the monitoring stations. Among the
various responsibilities, Infrastructure Maintenance refers to ensuring the supply of
electricity and communications, and Data Accuracy Checking denotes checking the
anomaly data.
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Figure A12: Robust Analysis of Event Study on PM2.5

Notes: This figure shows the sensitivity analysis of estimated effects on
PM2.5 to potential violations of the parallel trends assumption following
the methods proposed by Rambachan and Roth (2019). The blue bar rep-
resents the 95% confidence interval of the DiD estimate for the last period
(τ = 3) from the estimation of Equation (3). The red bars represent corre-
sponding 95% confidence intervals when allowing for per-period violations
of parallel trends up to M, which is the largest allowable change in the
slope of an underlying linear trend between two consecutive periods.
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Figure A13: Cities’ Maximum Distance between Cells and Monitors

Notes: This figure shows the distribution of the maximum distance between cells
and monitors (a proxy for city’s geographical size) across cities. The maximum
distance ranges from 18 km to 873 km, and the average maximum distance is 152
km.
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Figure A14: Robustness Check: Effects of Automation on ln(AOD) across Distances from
Monitors

Notes: This figure plots the estimated coefficients and their 95% level confidence
intervals for the effects of monitor automation on the satellite-based ln(AOD) at
different distance bins from the monitor. Each point estimate represents the pollu-
tion change in each distance bin relative to the baseline group at the outer range
(distance to monitor >150 km), which on average experiences a 0.2% pollution
increase. The absolute effect becomes positive above the dotted line. The regres-
sion includes cell fixed effects and year fixed effects, along with flexible interactions
between year dummies and an array of pre-treatment city characteristics (such as
average GDP, population, PM2.5 at the city level from 2008 to 2011, the maximum
distance between cells and monitors within a city and a dummy indicator for an
environmental priority city), and city-level concurrent PM10 and PM2.5 reduction
targets. Standard errors are clustered at the city level.
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Figure A15: Placebo Tests: Randomizing Treatment Timing and Locations

(a) Random Automation Years

(b) Random Monitor Locations

Notes: This figure presents the results of two placebo tests (See Equation (1)).
Figure (a) plots a “placebo” test that randomly assigns each monitor an automation
year within the sample period from 2008 to 2017. Figure (b) plots a “placebo” test
that randomly assigns monitor sites to various locations while keeping the number
of monitors and the year of automation unchanged. For each placebo test, the DiD
estimation is repeated 1000 times. The distribution of the estimates from the 1000
runs (blue lines) is then plotted along with the benchmark estimate (red line).A30



Figure A16: Event Study: The Effect of Automation on Air Pollution within 3km Across
Different Types of Monitors

(a) Regional Assessing Monitors

(b) Background Monitors

Notes: This figure plots the estimated coefficients and their 95% level con-
fidence intervals for βn from Equation (3) by different types of monitors
(Minitry of Ecology and Environment 2013). Panel A uses regional as-
sessing monitors that are used to measure a city’s pollution level. Panel b
uses background stations that are placed far away from pollution sources
and urban areas to serve as a reference. Each estimate represents the dif-
ference in PM2.5 between monitored areas (cells within 3km of monitors)
and unmonitored areas (cells outside the 3km radius) at a given period
(also reported in Table A10). The omitted time category is the year before
a city joined the automated monitoring program. The regression includes
cell fixed effects and year fixed effects, along with flexible interactions
between year dummies and an array of pre-treatment city characteristics
(such as average GDP, population, and PM2.5 at the city level from 2008 to
2011, the maximum distance between cells and monitors within a city and
a dummy indicator for an environmental priority city), and city-level con-
current PM10 and PM2.5 reduction targets. Standard errors are clustered
at the city level.
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Figure A17: Share of the Population Exposed to Unhealthy Pollution Levels at Different
Distances from Monitors

Notes: This figure displays the proportion of the population exposed to unhealthy
levels of pollution at varying distances from the monitoring stations. The exposure
to unhealthy levels of pollution is defined as residing in grid cells where the concen-
tration of PM2.5 exceeds the established air quality standards–The World Health
Organization (WHO) recommends a standard of 10 ug/m3, while China specifies
good air quality as 35 ug/m3 and excellent air quality as 15 ug/m3. To infer the
health threshold of AOD-based PM2.5 from the 10/15/35 ug/m3 standards with
the ground monitoring data, we follow a two-step process. Firstly, we establish the
relationship between AOD-imputed PM2.5 and ground-based PM2.5 using a regres-
sion model. Secondly, we pin down the AOD-based PM2.5 levels when ground-based
PM2.5 takes on the value of 10/15/35 ug/m3.
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Figure A18: Uneven Distribution of Air Quality Monitors Across Counties

(a) By Income

(b) By Urbanization Rate

Notes: This figure presents the monitor share across quantiles of counties. Panel A
divides counties into 50 groups according to their GDP per capita during the pre-
policy period (before 2012). Panel B categorizes counties into 50 groups based on
their urbanization rate. The monitor share is defined as the percentage of counties
with air quality monitors within their corresponding groups.

A33



Figure A19: Event Study: The Effect of Monitor Automation on Air Pollution within 3km
of a Monitor (2008–2015)

Notes: This figure plots the estimated coefficients and their 95% level confidence
intervals for βn from Equation (3). This figure depicts the periods from 2008 to 2015
and sets the sample in Wave 3 as the never treated group. Each estimate represents
the difference in PM2.5 between monitored areas (cells within 3km of monitors) and
unmonitored areas (cells outside 3km) at a given period (also reported in Table
A10). The omitted time category is the year before a city joined the automatic
monitoring program. The regression includes cell fixed effects and year fixed effects,
along with flexible interactions between year dummies and an array of pre-treatment
city characteristics (such as average GDP, population, PM2.5 at the city level from
2008 to 2011, the maximum distance between cells and monitors within a city and
a dummy indicator for an environmental priority city), and city-level concurrent
PM10 and PM2.5 reduction targets. Standard errors are clustered at the city level.
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Figure A20: Effects of Automation on lnPM2.5 at Different Distances from Monitors
(Monthly)

Notes: This figure plots the estimated coefficients and their 95% level confidence
intervals for the effects of monitor automation on the satellite-based lnPM2.5 at
different distance bins from the monitor by using Monthly AOD-based PM2.5 data.
Each point estimate represents the pollution change in each distance bin relative
to the baseline group at the outer range (distance to monitor >150 km), which
on average experiences a 3.2% pollution increase. The absolute effect becomes
positive above the dotted line. The regression includes cell fixed effects and year
fixed effects, along with flexible interactions between year dummies and an array
of pre-treatment city characteristics (such as average GDP, population, PM2.5 at
the city level from 2008 to 2011, the maximum distance between cells and monitors
within a city and a dummy indicator for an environmental priority city), and city-
level concurrent PM10 and PM2.5 reduction targets. Standard errors are clustered
at the city level.
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Table A1: Key government policy documents about Air Pollution Prevention during 2013–
2017

Policy Name Short Name Issue Time
Action Plan for Air Pollution Air Ten 2013.09
Prevention and Control
Target Responsibility Agreement (mubiao zerenshu) Target 2013.10
for Atmospheric Pollution Prevention and Control
Notice of the General Office of the State Council on Assessment 2014.04
Performance Assessment Measures for
Air Pollution Prevention and Control Action Plan
Notes: This table shows the key government policy documents on air pollution
prevention and performance assessment during 2013–2017 and their issuing time.
All are issued by the Ministry of Ecology and Environment (MEE) in China.
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Table A2: Robustness Check: Localized Cleanup Response to Monitoring Program
Automation, using AOD Raw Data

Dependent variable: ln(AOD)

(1) (2) (3) (4)
Unmonitored Areas: >3km >3km >3km >60km

Auto -0.0044 0.0024 -0.0044 -0.0053∗
(0.0027) (0.0027) (0.0027) (0.0031)

(0-3km)×Auto -0.0198∗∗∗ -0.0090∗∗∗ -0.0180∗∗∗
(0.0028) (0.0016) (0.0032)

CellFE X X X X
Year FE X X X X
Year FE × citypopulation2008−2011 X X X
Year FE × PM2008−2011

2.5 X X X
Year FE × Other City-level Controls X X X
Concurrent Policy X X X
Observations 10,865,784 10,888,044 10,865,784 7,399,416
R2 0.945 0.930 0.945 0.934
Notes: This table reports the effects of the monitor automation program on the satellite-
based ln(AOD). Auto is the treatment indicator that switches on after a city has joined
the automatic monitoring program. (0-3km) is a dummy variable that equals one if the
cells are located within a 3km radius of a city’s monitoring stations. Columns (3) and
(4) use cells within 3km of a monitor as the monitored group and compare them with
different unmonitored groups: cells outside 3km and 60km of the monitors. PM2008−2011

2.5 is
the average city-level PM2.5 and citypopulation2008−2011 is the average city population over
the 2008–2011 period. Other city-level controls include the average city-level GDP between
2008 and 2011, the number of monitors for each city, the maximum distance between cells
and monitors within a city, and a dummy variable that indicates whether or not a city is an
environmental priority city. The Concurrent Policy refers to the city-level concurrent PM10
and PM2.5 reduction targets. Standard errors are clustered at the city level. Significance:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A3: Localized Cleanup Response to Monitor Automation (Monthly)

Dependent variable: ln(PM2.5)

(1) (2) (3) (4) (5) (6)
Unmonitored Areas: >3km >3km >3km >3km >3km >60km

Auto 0.0164 -0.0203 0.0168 -0.0154 -0.0202 -0.0168
(0.0116) (0.0140) (0.0116) (0.0115) (0.0140) (0.0233)

(0-3km)×Auto -0.0622∗∗∗ -0.0302∗∗∗ -0.0247∗∗∗ -0.0374∗∗
(0.0093) (0.0073) (0.0079) (0.0157)

CellFE X X X X X X
Year Month FE X X X X X X
CellFE X Month FE X X X X
Year FE × citypopulation2008−2011 X X X X
Year FE × PM2008−2011

2.5 X X X X
Year FE × Other City-level Controls X X X
Concurrent Policy X X X
Observations 124,594,942 124,594,942 124,594,942 124,594,942 124,594,942 90,429,709
R2 0.961 0.962 0.961 0.963 0.956 0.955
Notes: This table reports the effects of the monitor automation program on the satellite-based lnPM2.5. lnPM2.5 is the
natural logarithm of the cell-level monthly satellite-based PM2.5. Auto is the treatment indicator that equals one after a
city has joined the automatic monitoring program. (0-3km) is a dummy variable that equals one if the cells are located
within a 3km radius of a city’s monitoring stations. Columns (1)–(6) use cells within 3km of the monitor as the monitored
group, comparing them with different unmonitored groups: cells beyond 3km from the monitors in columns (1)–(5) and
60km from the monitors in column (6), respectively. PM2008−2011

2.5 is average city-level PM2.5 during the 2008–2011 period
and citypopulation2008−2011 is the average city population from 2008 to 2011. Other city-level controls are the average
city-level GDP from 2008 to 2011, the number of monitors in each city, the maximum distance between cells and monitors
within a city, and a dummy variable that indicates whether or not a city is an environmental priority city. The Concurrent
Policy refers to the city-level concurrent PM10 and PM2.5 reduction targets. Standard errors are clustered at the city level.
Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A4: Localized Cleanup Response to Monitoring Program Automation: AOD
(Monthly)

Dependent variable: ln(AODMonthlyMax) ln(AODMonthlyMin) ln(AODMonthlyMean)

(1) (2) (3) (4) (5) (6)

Auto 0.0014 -0.0101 -0.00009.33 -0.0028 0.0006 -0.0054∗∗
(0.0064) (0.0069) (0.0023) (0.0022) (0.0023) (0.0025)

(0-3km)×Auto -0.0372∗∗∗ -0.0141∗ -0.0147∗∗ -0.0093 -0.0278∗∗∗ -0.0139∗∗
(0.0096) (0.0079) (0.0062) (0.0059) (0.0072) (0.0064)

CellFE X X X X X X
Year Month FE X X X X X X
CellFE X Month FE X X X X
Year FE × citypopulation2008−2011 X X X
Year FE × AOD2008−2011 X X X
Year FE × Other City-level Controls X X X
Concurrent Policy X X X
Observations 114,062,258 113,802,919 114,062,258 113,802,919 114,062,258 113,802,919
R2 0.684 0.692 0.721 0.726 0.769 0.777
Notes: This table reports the effects of the monitor automation program on the satellite-based lnAOD. We construct differ-
ent monthly AOD statistics based on the daily AOD data within each month. ln(AODMonthlyMax) and ln(AODMonthlyMin)
is the natural logarithm of the cell-level maximum and minimum AOD value of each month, and ln(AODMonthlyMean) is the
natural logarithm of the cell-level average AOD value of each month. Auto is the treatment indicator that equals one after
a city has joined the automatic monitoring program. (0-3km) is a dummy variable that equals one if the cells are located
within a 3km radius of a city’s monitoring stations. AOD2008−2011 is average city-level AODMonthlyMax during the 2008–2011
period and citypopulation2008−2011 is the average city population from 2008 to 2011. Other city-level controls are the average
city-level GDP from 2008 to 2011, the number of monitors in each city, the maximum distance between cells and monitors
within a city, and a dummy variable that indicates whether or not a city is an environmental priority city. The Concurrent
Policy refers to the city-level concurrent PM10 and PM2.5 reduction targets. Standard errors are clustered at the city level.
Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A5: Robustness Check: Correction Via Multiple Imputations

Dependent Variable: ln(PM2.5)
(1) (2) (3)

Variables
Auto 0.0250 -0.00989 0.00208

(0.0147) (0.0153) (0.0164)
(0-3km)×Auto -0.0586∗∗∗ -0.0247∗∗∗ -0.0234∗∗∗

(0.0112) (0.00653) (0.00701)

CellFE X X X
Year FE X X X
Year FE × citypopulation2008−2011 X X
Year FE × ln(PM2.5)2008−2011 X X
Year FE × Other City-level Controls X
Concurrent Policy X
Observations 10,413,717 10,413,717 10,413,717

Notes: This table reports the effects of the monitor automation program on the natural logarithm of the
cell-level yearly satellite-based lnPM2.5 with correction. Following the lead of Proctor, Carleton and Sum
(2023), we employ bootstrap sampling to randomly select 70% of the ground-based monitoring data and
then generate the remaining 30% of the sample through multiple imputations. We then utilize that sample
of the 70% original data, and 30% imputed observations to perform regression analysis and simulate the
relationship between satellite PM2.5 values and their corresponding ground-based readings. Following that,
we predict PM2.5 values for all grids in our main dataset using the satellite data and the regression model
derived in the previous step. This process is repeated 100 times. The parameters presented represent the
means calculated from this distribution of bootstrap samples. Auto is the treatment indicator that equals
one after a city has joined the automatic monitoring program. (0-3km) is a dummy variable that equals
one if the cells are located within a 3km radius of a city’s monitoring stations. PM2008−2011

2.5 is average
city-level PM2.5 during the 2008–2011 period and citypopulation2008−2011 is the average city population
from 2008 to 2011. Other city-level controls are the average city-level GDP from 2008 to 2011, the number
of monitors in each city, the maximum distance between cells and monitors within a city, and a dummy
variable that indicates whether or not a city is an environmental priority city. The Concurrent Policy refers
to the city-level concurrent PM10 and PM2.5 reduction targets. Standard errors are clustered at the city
level. Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A6: Robustness Check: Localized Cleanup Response to Monitor Automation
(2008–2015)

Dependent variable: ln(PM2.5)

(1) (2) (3) (4)
Unmonitored Areas: >3km >3km >3km >60km

Auto -0.029 -0.002 -0.029 -0.057*
(0.021) (0.024) (0.021) (0.029)

(0-3km)×Auto -0.032*** -0.039*** -0.077***
(0.012) (0.012) (0.027)

CellFE X X X X
Year FE X X X X
Year FE × citypopulation2008−2011 X X X
Year FE × PM2008−2011

2.5 X X X
Year FE × Other City-level Controls X X X
Concurrent Policy X X X
Observations 8,330,086 8,330,086 8,330,086 6,067,588
R2 0.980 0.977 0.980 0.980
Notes: This table reports the effects of the monitor automation program on the
satellite-based lnPM2.5. The sample covers the 2008–2015 period, setting monitors
treated in Wave 3 as the never treated ones. lnPM2.5 is the natural logarithm of the
cell-level yearly satellite-based PM2.5. Auto is the treatment indicator that switches
on after a city has joined the automatic monitoring program. (0-3km) is a dummy
variable that equals one if the cells are located within a 3km radius of a city’s mon-
itoring stations. Columns (3) and (4) use cells within 3km of the monitor as the
monitored group and compare it with different unmonitored groups: cells outside 3km
and 60km of the monitors, respectively. PM2008−2011

2.5 is the average city-level PM2.5 and
citypopulation2008−2011 is the average city population over the 2008–2011 period. Other
city-level controls are the average city-level GDP between 2008 and 2011, the number
of monitors in each city, the maximum distance between cells and monitors within a
city, and a dummy variable that indicates whether or not a city is an environmental
priority city. The Concurrent Policy refers to the city-level concurrent PM10 and PM2.5
reduction targets. Standard errors are clustered at the city level. Significance: ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01.
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Table A7: Robustness Check: Mechanism of Localized Cleaning (2008-2015)–Thermal
Anomalies

(1) (2) (3) (4) (5)
VARIABLES 1(TAP) ln(Days+1) ln(FRP+1) ln(Days+1) ln(FRP+1)

Auto 0.336*** -0.0469 -0.0325 0.00160** 0.00329**
(0.0150) (0.0414) (0.0445) (0.000651) (0.00150)

Marginal Effect 0.0839*** -0.0144 -0.0230
(0.00402) (0.0127) (0.0315)

(0-3km)×Auto -0.377*** -0.263*** -0.233*** -0.00676 -0.00528
(0.0589) (0.0448) (0.0455) (0.00558) (0.0125)

Marginal Effect -0.0660*** -0.0808*** -0.165***
(0.0144) (0.0138) (0.0322)

Cell FE X X X X X
Year FE X X X X X
Year FE × citypopulation2008−2011 X X X X
Year FE × PM2008−2011

2.5 X X X X
Year FE × Other City-level Controls X X X X
Concurrent Policys X X X X
Model Logit Poisson Poisson OLS OLS
Sample All All All 1(TAP) 1(TAP)
Observations 127,288 165,040 165,040 39,125 39,125
R-squared 0.743 0.583
Notes: This table reports the effects of the monitor automation program on thermal anomalies. The analysis
uses the sample from 2008 to 2015 and sets monitors automated in Wave 3 as the never treated ones. Column
(1) uses a logit regression model. Columns (2) and (3) use a Poisson regression model. Columns (4) and
(5) use an OLS model. For the logit and Poisson regression models, the marginal effects are also reported.
Column (1) reports the results for a dummy indicator of thermal anomalies presence (TAP), denoted by
1(TAP), which is equal to one if thermal-related economic activities are present in a cell in that year. Column
(2) reports the results for the number of days with active thermal anomalies using the full sample, which
measures the operating time of industrial plants in each cell. Column (3) reports the results for the average
intensity of thermal anomalies, denoted by ln(FRP+1). FRP is defined as the rate of radiant heat output,
which is related to the rate at which fuel is consumed, and smoke emissions are released. We use the natural
logarithm of (FRP+1) and (Days+1) to tackle zero observations. Column (4) reports the effect of automation
on the logarithm of the number of days with active thermal anomalies by restricting the sample to only those
grid cell-year observations when 1(TAP) is equal to one. Column (5) reports the effect of automation on the
average intensity of thermal anomalies per day (denoted by ln(FRP+1)) when 1(Thermal Anomalies Presence)
is equal to one. lnPM2.5 is the natural logarithm of the cell-level yearly satellite-based PM2.5. Auto is the
treatment indicator that takes the value of one after a city has joined the automatic monitoring program.
(0-3km) is a dummy variable that equals one if cells are located within 3km of a city’s monitoring stations.
PM2008−2011

2.5 is the average city-level PM2.5 and citypopulation2008−2011 is the average city population over the
2008–2011 period. Other city-level controls are the average city-level GDP from 2008 to 2011, the number
of monitors in each city, the maximum distance between cells and monitors within a city, and a dummy
variable that indicates whether or not a city is an environmental priority city. The Concurrent Policy refers
to the city-level concurrent PM10 and PM2.5 reduction targets. Standard errors are clustered at the city level.
Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

A42



Table A8: Validating Thermal Anomalies Data: Extensive Margins

Dependent variable: Presence of any polluting firm Presence of any power plant

(1) (2) (3) (4)

Thermal Anomalies Presence 24.35∗∗∗ 44.26∗∗∗ 22.91∗∗∗ 37.70∗∗∗
(0.1384) (0.000) (0.1408) (0.000)

Marginal Effect 0.997*** 0.996*** 0.995*** 0.992***
(0.000) (0.000) (0.001) (0.000)

City FE X X
Observations 95,168 68,161 380,672 240,188

Notes: This table shows the association between thermal anomalies and polluting firms or power plants at the extensive margin,
using the logit model. In columns (1) and (2), the dependent variable is a dummy variable that equals one if there are any polluting
plants within a 10km-by-10km cell. The polluting plants come from the MEE’s Key Centrally Monitored Polluting Enterprises
database. In columns (3) and (4), the dependent variable is a dummy indicator that equals one if there is any power plant within the
10km-by-10km cell. The power plants sample is obtained from the China Emissions Accounts for Power Plants (CEAP). “Thermal
Anomalies Presence” is a dummy variable that equals one if there are any thermal-related economic activities in a cell. Columns
(2) and (4) include city-fixed effects. Standard errors are clustered at the city level. Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table A9: Validating Thermal Anomalies Data: Intensive Margins

Dependent variable: ln(PM2.5)

Sample Polluting firms Power plants

(1) (2)

ln(FRP+1) 0.129*** 0.136***
(0.009) (0.004)

Observations 1,806 10,491
R-squared 0.108 0.102

Notes: This table shows the relationship between the intensity of
the thermal anomalies observed and the satellite-derived pollution
levels of firms or power plants at the intensive margins. The sam-
ples are restricted to only those grid cells with polluting firms or
power plants. The polluting plants are defined using the MEE’s
Key Centrally Monitored Polluting Enterprises database, and the
power plants sample is obtained from the China Emissions Accounts
for Power Plants (CEAP). The dependent variable is lnPM2.5, de-
fined as the natural logarithm of the cell-level yearly satellite-based
PM2.5. FRP measures the intensity of thermal-related economic
activities, which is defined as the average rate of radiant heat out-
put within a 10km radius of polluting firms, which is based on the
rate at which fuel is consumed, and smoke emissions are released.
Standard errors are clustered at the city level. Significance: ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01.
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Table A10: Event Study: The Effect of Monitor Automation on Air Pollution within 3km
of a Monitor

Dependent variable:

ln(PM2.5) ln(AOD)

(1) (2)

(0-3km)×before4 0.011 -0.0007
(0.009) (0.0023)

(0-3km)×before3 -0.001 0.0037
(0.012) (0.0028)

(0-3km)×before2 -0.004 -0.0030
(0.011) (0.0031)

(0-3km)×after0 -0.018 -0.0006
(0.015) (0.0029)

(0-3km)×after1 -0.033** -0.0048∗
(0.013) (0.0028)

(0-3km)×after2 -0.020 -0.0081∗∗∗
(0.017) (0.0031)

(0-3km)×after3 -0.036** -0.0163∗∗∗
(0.014) (0.0031)

CellFE X X
YearFE X X
Year FE × citypopulation2008−2011 X X
Year FE × PM2008−2011

2.5 X X
Year FE × Other City-level Controls X X
Concurrent Policy X X
Observations 10,413,717 10,407,855
R-squared 0.975 0.964
Notes: The table reports the event study results of monitor au-
tomation on air pollution with different dependent variables. Col-
umn (1) shows the effect of monitor automation on ln(PM2.5) of
monitored areas (within 3km of a monitor; Figure 3), and col-
umn (2) shows the effect of monitor automation on the annual
ln(AOD)in monitored areas (within 3km of a monitor; Figure A4).
All regressions control for cell-fixed effects, year-fixed effects, and
time dummy interactions. PM2008−2011

2.5 is average city-level PM2.5

and citypopulation2008−2011 is the average city population over the
2008–2011 period. Other city-level controls are the average city-
level GDP from 2008 to 2011, the number of monitors in each
city, the maximum distance between cells and monitors within a
city, and a dummy variable that indicates whether or not a city
is an environmental priority city. The Concurrent Policy refers to
the city-level concurrent PM10 and PM2.5 reduction targets. Stan-
dard errors are clustered at the city level. Significance: ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01.
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Table A11: Placebo Effects of Pseudo Automation Treatment on Cities without Monitors

Dependent variable: ln(PM2.5)

(1) (2) (3) (4) (5) (6)
Monitor Area: Environment Government Environment Government

Bureau Offices All Bureau Offices All

Automation Wave: 2 3

(0-3km)×Auto -0.070 -0.022 -0.059 -0.063 -0.016 -0.054
(0.052) (0.021) (0.033) (0.053) (0.014) (0.034)

CellFE X X X X X X
Year FE X X X X X X
Year FE × citypopulation2008−2011 X X X X X X
Year FE × PM2008−2011

2.5 X X X X X X
Observations 163,746 163,746 163,746 163,746 163,746 163,746
R2 0.980 0.980 0.980 0.980 0.980 0.980
Notes: This table presents the placebo effects of monitor automation on cities that had never received the monitoring
automation treatment. lnPM2.5 is the natural logarithm of the cell-level yearly satellite-based PM2.5. To make them
a comparable control group to our treatment group, we identify “placebo” monitor spots in these nine cities. By
checking the existing monitor siting rules, we assigned the counterfactual monitor/s to the location of 1) the municipal
Environmental Protection Bureau, 2) the municipal government building, or 3) both. Further, we assigned their fake
automation timing to be either in Wave 2 or 3, denoted by Auto. (0-3km) is a dummy variable that equals one if the
cells are located within a 3km radius of a city’s “pseudo” monitoring stations. In Column (1) and Column (4), monitors
are sited in the environment bureau buildings, while in Column (2) and Column (5), they are sited in government
office buildings. In Columns (3) and (6), monitors are assigned to both environment bureau and government office
buildings. PM2008−2011

2.5 is average city-level PM2.5 during the 2008–2011 period and citypopulation2008−2011 is the
average city population from 2008 to 2011. Standard errors are clustered at the city level. Significance: ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01.
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Table A12: Summary of Government Documents Mentioning Strategic Cleaning

Type Policy Measures Number of Government Documents
Coal and other Clean energy replacement 2
energy pollution control Boiler renovation 16

Transportation pollution control
Yellow-label vehicles 2(high-emission vehicles)
Travel restrictions 2

Dust pollution control
Spraying Water 16

Windproof and dust suppression nets 6
Wet cleaning 2

Dust suppression/suction vehicles 3
Agricultural and Banning open burning 4
other pollution control Banning outdoor cookings 22

Industrial pollution control Shutdown 3
key monitoring enterprises 2

Notes: This table reports measures for strategic cleaning which mention in the government documents and the
number of documents for each kind of strategic cleaning measures. There are 121 government documents that
mention strategic cleaning in total.
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Table A13: Mechanism: Effect of Automation on Local Relative Humidity (Monthly)

Dependent Variable: ln(Humidity)
(1) (2) (3) (4) (5)

Unmonitored Areas: All All All Winter Summer

Variables
Auto -0.0053 -0.0054 0.0025 -0.0057 0.0064

(0.0065) (0.0065) (0.0077) (0.0100) (0.0084)
(0-3km)×Auto 0.0288∗∗∗ 0.0210∗∗ 0.0335∗∗∗ 0.0094

(0.0082) (0.0083) (0.0084) (0.0077)

Cell X X X X X
Yearmonth X X X X X
Climate Controls X X X

Fit statistics
R2 0.92948 0.92948 0.95959 0.96254 0.95638
Observations 11,222,880 11,222,880 11,222,880 4,676,200 6,546,680

Notes: This table presents the effects of the monitor automation program on satellite-
based relative humidity (monthly) with meteorological data from He et al. (2020).
The variable “Auto” is a treatment indicator that equals one after a city has joined
the automatic monitoring program, while the dummy variable “(0-3km)” equals one if
the cells are located within a 3km radius of a city’s monitoring stations. The climate
controls include temperature, precipitation, and wind. Columns (1) to (3) reports
the results for the whole sample period. Column (4) reports the results for the winter
period from October of one year to February of the next year, while Column (5)
reports the estimation results for the summer period from March to September of
a year. Standard errors are clustered at the city level, and significance levels are
indicated by asterisks: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A14: Mortality and Morbidity Impacts of Uneven Pollution Control

Total Monetary Value Total Healthcare Per capita Monetary Value Per capita Healthcare
Distance from Population Excess of Excess Spending Savings from of Excess Spending Savings from
Monitors Death Reduction Death Reduction PM_2.5 Reduction Death Reduction PM_2.5 Reduction

(×103 person) (×103 person) (billion $ ) (billion $ ) ($ ) ($ )

(1) (2) (3) (4) (5) (6)

(0-3km) 118970.12 13.06 15.02 0.25 126.22 2.10
(3-6km) 92787.05 9.22 10.6 0.18 114.24 1.90
(6-9km) 47720.46 4.29 4.93 0.08 103.41 1.72
(9-15km) 72816.85 5.94 6.83 0.11 93.85 1.56
(15-21km) 63986.63 4.81 5.53 0.09 86.41 1.44
(21-30km) 87327.55 6.05 6.95 0.12 79.63 1.33
(30-45km) 127270.47 7.29 8.39 0.14 65.88 1.10
(45-60km) 107054.99 5.29 6.08 0.1 56.84 0.95
(60-90km) 128741.45 4.15 4.77 0.08 37.09 0.62
(90-120km) 54978.79 0.51 0.59 0.01 10.67 0.18
(120-150km) 21358.18 -0.34 -0.4 -0.01 -18.52 -0.31
(>150km) 22651.89 -1.54 -1.77 -0.03 -78.36 -1.30
Total 945664.44 58.72 67.53 1.12 677.37 11.28

Notes: This table presents various distance bins from the monitors, the monetized health benefits of automation— the value of PM2.5-attributable death
reduction and healthcare spending saved annually. Column (1) shows the corresponding population of each distance bin. Columns (2)–(6) report the
benefits, as shown in the heading. These outcomes are computed using the pollution reduction from automation, which is denoted by ∆PMwelfare

2.5 =

α×Auto×PMpre
2.5 +

∑(>150)
n=(0−3) βnAutoct×Binn×PM2.5pre2.5 . PMpre

2.5 is the average cell-level yearly satellite-based PM2.5 from 2008 to 2011 (the pre-treatment
period). Auto is the treatment indicator that equals one after a city has joined the automatic monitoring program. The annual reduction of excess deaths
in column (2) is equal to the PM2.5-attributable monthly mortality rate 3.25% from He, Liu and Zhou (2020) (i.e., a 10 µg/m3 increase in PM2.5 increases
monthly mortality by 3.25%) × pollution reduction calculated above (∆PM2.5)/10 × population2015 × 12 months. Based on Fan, He and Zhou (2020), the
average value of a typical Chinese person’s statistical life was around 1.15 million USD in 2015. Column (3) then infers the monetary value of lives saved from
PM2.5 reduction. According to Barwick et al. (2018), a medium-run reduction of 10 µg/m3 in daily PM2.5 would lead to $22.4 annual savings in healthcare
spending per household. Given that the average household size is 3 people (source: National Bureau of Statistics, UNICEF China, UNFPA China, ‘Population
Status of Children in China in 2015: Facts and Figures’, 2017) and using population data in 2015, the healthcare spending savings are thus calculated as
population2015/3 × ∆PM2.5/10× $22.4 in Column (4). Columns (5) and (6) report the per capita health benefits from reduced mortality and morbidity.
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